
April 6, 2024 STAT230 – Week 8 Justin Ko

1 Random Variables Part II — Change of Variables

1.1 Change of Variables Formula (Discrete Random Variables)

Suppose that we know the PDF fX(x) of X. Our goal is to recover the the PMF fY (y) of the random
variable Y = g(X). This can be done directly using the following steps

1. Using the range of X, find the range of Y = g(X) denoted by computing the image of the range
of X:

Y (S) = g(X(S)).

2. Compute the PMF of Y by expressing it in terms of the PMF of X:

fY (y) = P(Y = y) = P(g(X) = y) =
∑

x:g(x)=y

P(X = x) =
∑

x∈g−1({y})=y

fX(x).

This procedure is summarized by the change of variables formula.

Theorem 1 (Change of Variables Formula (Discrete))

If X is discrete and g : R→ R, then

fY (y) =
∑

x∈g−1({y})

fX(x), y ∈ Y (S) = g(X(S)).

1.2 Change of Variables Formula (Continuous Random Variables)

Suppose that we know the PDF fX(x) of X. Our goal is to recover the the PDF fY (y) of the random
variable Y = g(X). This can be done directly using the following steps

1. Use the support of X to find the support of Y = g(X):

supp(Y ) = cl({y ∈ R : fY (y) > 0}) = g(supp(X)).

2. Compute the CDF of Y for y ∈ supp(Y ) by expressing it in terms of the CDF of X:

FY (y) = P(g(X) ≤ y) = . . .

When the function g is not strictly increasing (or decreasing) over the support of X, then we
must be careful when rewriting the inequality P(g(X) ≤ y).

3. Compute the PDF of Y by differentiating the CDF of Y ,

fY (y) = F ′Y (y) y ∈ supp(Y ).

Remark 1. Technically, the function FY is only differentiable on the interior of supp(Y ). This is not
an issue since we can simply define fY (y) on the boundaries by continuity.

When g is invertible, the above procedure gives us the change of density formula.

Theorem 2 (Change of Variables Formula (Continuous))

Let X be a (absolutely) continuous random variable and g be invertible and differentiable with
inverse g−1 on the support of Y , then

fY (y) = |(g−1)′(y)|fX(g−1(y)) =
1

|g′(g−1(y))|
fX(g−1(y)), y ∈ supp(Y ).
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1.3 Quantiles

Suppose that we are given X and a value p ∈ (0, 1) and we are interested in computing the value of t
such that

FX(t) = P(X ≤ t) = p.

If FX is invertible, then t = F−1
X (p). However, not all CDFs are invertible so how does one define such

a t in general. This generalized notation of an inverse is called a quantile function.

Definition 1. Let p ∈ [0, 1]. The p quantile (or 100 × pth percentile) of the distribution of X with
CDF FX is the smallest number cp that satisfies FX(cp) ≥ p. In other words,

cp = inf{x ∈ R : FX(x) ≥ p}.

Remark 2. Recall that the infimum of a set A is the largest lower bound of A. For example,

inf{x ∈ R : 0 < x < 1} = 0.

Definition 2. The median of a distribution is its 0.5 quantile.

1.3.1 Generalized Inverse Interpretation

The quantile function p 7→ cp is also called generalized inverse function, because it is a well defined
function even if FX is not strictly increasing like in the case of discrete random variables. It is an
abuse of notation, but we often use the notation

F−1
X (p) := cp = inf{x ∈ R : FX(x) ≥ p}.

The quantile function F−1
X (p) is non-decreasing and left-continuous for p ∈ (0, 1). We can compute

the quantile in the following way

� If the distribution function FX is continuous and strictly increasing, it has an inverse F−1
X so

cp = F−1
X (p).

� If FX has jumps or flat regions, then FX(x) = p may not have any solution or it might have
infinitely many. In this case, the function F−1

X (p) is the left continuous step function that
interpolates between the points (p, x) where x is the location of the jumps of FX .

1.4 Example Problems

1.4.1 Applications

Problem 1.1. Let X be a continuous random variable with CDF FX(x) = P(X ≤ x) and let g : R 7→
R be an increasing function with inverse g−1. Compute FY (y) = P(Y ≤ y).

Solution 1.1. We can write the CDF of Y in terms of the CDF of X by

FY (y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g−1(y)).

Remark 3. Notice that the CDF of Y = g(X) is not g(FX(x)).
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Problem 1.2. Let X be a continuous random variable with the following pdf:

fX(x) =

{
1
4 0 < x ≤ 4,

0 otherwise

1. Find the CDF of X.

2. Let Y = X−1. Find the CDF Y .

3. Find the PDF of Y .

Solution 1.2.

1. Outside the support of X, we have FX(x) = 0 for x < 0 and FX(x) = 1 for x > 4. For x in the
support of X, i.e. x ∈ [0, 4]

FX(x) =

∫ x

0

1

4
=
x

4
.

In summary,

FX(x) =


0, if x < 0
x
4 , if 0 ≤ x < 4

1, if 4 ≤ x

2. Notice that supp(X) = [0, 4]. Therefore, the support of Y = X−1 is

0 ≤ X ≤ 4 =⇒ ∞ ≥ X−1 ≥ 1

4
=⇒ supp(Y ) =

[1

4
,∞
)
.

For y in the support of Y , i.e. y ∈
[

1
4 ,∞

)
FY (y) = P(Y ≤ y) = P(X−1 ≤ y) = P(X >

1

y
) = 1− P(X ≤ 1

y
) = 1− FX(y−1) = 1− 1

4y
.

In summary,

FY (y) =

{
0, if y < 1

4

1− 1
4y , if 1

4 ≤ y

3. To get the PDF of Y , we simply differentiate FY (y) to conclude that

fY (y) = F ′Y (y) =
d

dy

(
1− 1

4y

)
=

1

4y2
for y ∈

[1

4
,∞
)
.

and fY (y) = 0 for y 6∈
[

1
4 ,∞

)
.

Alternative Solution: We can compute the PDF of f using the change of variables formula. We
have g(x) = 1

x , so g′(x) = − 1
x2 and g−1(x) = 1

x . Therefore, for y ∈ [ 1
4 ,∞),

fY (y) =
1

|g′(g−1(y))|
fX(g−1(y)) =

1

| − 1
(y−1)2 |

1

4
=

1

4y2
.

Problem 1.3. Suppose a continuous random variable X has probability density function

fX(x) =

{
1− |x| −1 ≤ x ≤ 1

0 otherwise
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1. Find the CDF of X.

2. Let Y = X2. Find the CDF Y .

3. Find the PDF of Y .

Solution 1.3.

1. We can rewrite the PDF as

fX(x) =


1 + x −1 ≤ x < 0

1− x 0 ≤ x < 1

0 otherwise

Outside the support of X, we have FX(x) = 0 for x < −1 and FX(x) = 1 for x > 1. We have
two cases for x in the support of X,

(a) If x ∈ [−1, 0]

FX(x) =

∫ x

−1

1 + t dt = t+
t2

2

∣∣∣x
−1

= x+
x2

2
+

1

2
.

(b) If x ∈ [0, 1]

FX(x) =

∫ 0

−1

1 + t dt+

∫ x

0

1− t dt =
(
t+

t2

2

)∣∣∣0
−1

+
(
t− t2

2

)∣∣∣x
0

= x− x2

2
+

1

2
.

In summary,

FX(x) =



0 x < −1

x+
1

2
x2 +

1

2
−1 ≤ x < 0

x− 1

2
x2 +

1

2
0 ≤ x < 1

1 1 ≤ x

2. Notice that supp(X) = [−1, 1]. Therefore, the support of Y = X2 is

−1 ≤ X ≤ 1 =⇒ 0 ≤ X2 ≤ 1 =⇒ supp(Y ) = [0, 1].

Outside of the support, for y < 0 we have FY (y) = 0 and for y > 1 we have FY (y) = 1. In the
support of Y , we have

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤ √y)

= FX(
√
y)− FX(−√y)

=

(
√
y − 1

2
y +

1

2

)
−
(
−√y +

1

2
y +

1

2

)
= 2
√
y − y.

In summary,

FY (y) =


0 y < 0

2
√
y − y 0 ≤ y < 1

1 1 ≤ y
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3. To get the PDF of Y , we simply differentiate FY (y) to conclude that

fY (y) = F ′Y (y) =
d

dy

(
2
√
y − y

)
=

1
√
y
− 1 for y ∈ [0, 1].

and fY (y) = 0 for y 6∈ [0, 1].

Remark 4. The function g(x) = x2 is not increasing on the supp(X) = [−1, 1] so we can’t use the
change of variables formula.

Problem 1.4. Suppose X has PDF

fX(x) =

{
2e−2x, x > 0

0 otherwise

What is the median of the distribution of X?

Solution 1.4.

� The cdf of X is

FX(x) =

∫ x

−∞
f(t) dt =

∫ x

0

2e−2t dt = −e−2t
∣∣∣x
0

= 1− e−2x, x ≥ 0

and FX(x) = 0 for x < 0.

� The function FX is strictly increasing for x ≥ 0 so FX(cp) = p has a unique solution for p ∈ (0, 1):

FX(cp) = p⇔ 1− e−2cp = p⇔ cp = − log(1− p)/2

� For p = 0.5 we get c0.5 = − log(0.5)/2 ≈ 3.466 as the median.

Problem 1.5. Suppose X and Y are continuous random variables satisfying P(X ≤ t) < P(Y ≤ t)
for all t ∈ R. Let sx and sy denote the median of the distributions of X and Y , respectively. Show
that

sy < sx.

Solution 1.5. By definition, we have 0.5 = FX(sx) = FY (sy). However, since P(X ≤ t) < P(Y ≤ t)

0.5 = FY (sy) = FX(sx) < FY (sx)

This implies that FY (sy) < FY (sx) which must mean that sy < sx because FY is increassing.

Problem 1.6. Consider the random variable X with

P(X = 1) = 1/6, P(X = 2) = 2/6 P(X = 3) = 3/6.

Sketch the CDF of X and compute F−1
X (p) for p ∈ (0, 1).

Solution 1.6.
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1. The cumulative distribution function is

FX(x) =


0, x < 1,
1
6 , 1 ≤ x < 2
1
2 , 2 ≤ x < 3,

1 3 ≤ x

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
(x

)

2. To compute the quantile function, we notice that the discontinuities of the CDF occur at
(1, 1

6 ), (2, 1
2 ), (3, 1). Therefore, the discontinuities for the quantile function occur at ( 1

6 , 1), ( 1
2 , 2), (1, 3).

Extending this to make the function left continuous implies

F−1
X (p) = cp = inf{x ∈ R : FX(x) ≥ p} =


1, 0 < p ≤ 1

6

2, 1
6 < p ≤ 1

2

3, 1
2 < p ≤ 1.

Remark 5. The end points of the intervals in the quantile function are the same as the p values
of the CDF at the jumps. Furthermore, the < inequality is always on the left of the x and the
≤ inequality is always to the right of the x. This implies the quantile function is left continuous.
Furthermore, the value of the quantile function on each interval is equal to the value of the
quantile function at the right endpoint .

Remark 6. To find individual points of the quantile at p, we find the smallest point where the
graph FX(x) lies on or above the horizontal line p. This is demonstrated for p ∈ (0, 1/6] (left),
p ∈ (1/6, 1/2] (middle) and p ∈ (1/2, 1] (right).

x

F
(x

)

p
1/

2
1

cp =  1 2 3

x

F
(x

)

1/
6

p
1/

2
1

1 cp =  2 3

x

F
(x

)

1/
6

1/
2

p
1

1 2 cp =  3

1.4.2 Derivations and Proofs

Problem 1.7. Prove Theorem 1.
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Solution 1.7. This follows directly from the fact that X is discrete, so P(Y = y) = P(g(X) = y) can
be found by summing up all the probabilities of the values of x such that g(x) = y,

fY (y) = P(Y = y) = P(g(X) = y) =
∑

x:g(x)=y

P(X = x) =
∑

x∈g−1({y})=y

fX(x).

Problem 1.8. Prove Theorem 2.

Solution 1.8.

Strictly Increasing: We first consider the case that g is strictly increasing. If g is strictly increas-
ing, then

FY (y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) =

∫ g−1(y)

−∞
fX(t) dt.

Therefore, we can use the fundamental theorem of calculus and the chain rule to see that for points in
the interior of the support of Y ,

fY (y) =
d

dy

∫ g−1(y)

−∞
fX(t) dt = fX(g−1(y))

d

dy
g−1(y) =

1

g′(g−1(y))
fX(g−1(y)).

Since g is strictly increasing, g′ > 0, so

fY (y) =
1

|g′(g−1(y))|
fX(g−1(y)), y ∈ supp(Y ).

Strictly Decreasing: We now consider the case that g is strictly decreasing. If g is strictly decreasing,
then

FY (y) = P(g(X) ≤ y) = P(X ≥ g−1(y)) = 1− P(X ≤ g−1(y)) = 1− 1−
∫ g−1(y)

−∞
fX(t) dt.

Therefore, we can use the fundamental theorem of calculus and the chain rule to see that for points in
the interior of the support of Y ,

fY (y) =
d

dy

(
1−

∫ g−1(y)

−∞
fX(t) dt

)
= −fX(g−1(y))

d

dy
g−1(y) = − 1

g′(g−1(y))
fX(g−1(y)).

Since g is strictly increasing, g′ < 0, so

fY (y) =
1

|g′(g−1(y))|
fX(g−1(y)), y ∈ supp(Y ).

Problem 1.9. (?) Prove the following properties for the quantile function

1. For all x ∈ R, F−1
X (FX(x)) ≤ x

2. For all p ∈ [0, 1], FX(F−1
X (p)) ≥ p

3. F−1
X (p) ≤ x⇔ p ≤ FX(x)

4. F−1
X (p) is non-decreasing and left-continuous (except for the endpoints p = 0 or p = 1)

Solution 1.9.
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1. We have
F−1
X (FX(x)) = inf

t∈R
{FX(t) ≥ FX(x)} ≤ x

since x ∈ {t ∈ R : FX(t) ≥ FX(x)}.

2. Since FX is right continuous and increasing we have {FX(x) ≥ p} is a closed set, so it attains its
infimum. Therefore, cp ∈ {FX(x) ≥ p} so

FX(F−1
X (p)) = FX(cp) ≥ p.

3. On one hand, F−1
X (p) ≤ x implies that x ∈ {t : FX(t) ≥ p} so p ≤ FX(x). On the other

hand, if p ≤ FX(x) then x ∈ {t : FX(t) ≥ p} so F−1
X (p) ≤ x since F−1

X (p) is the infimum of all
{t : FX(t) ≥ p}.

4. Suppose that p1 ≤ p2. Then

F−1
X (p1) = inf

x∈R
{FX(x) ≥ p1} ≤ inf

x∈R
{FX(x) ≥ p2} = F−1

X (p2)

since {FX(x) ≥ p1} ⊆ {FX(x) ≥ p2}, so F−1
X is non-decreasing.

To see left continuity, notice that monotone functions can only have jump discontinuities, so it
suffices to show that supq<p F

−1
X (q) = F−1

X (p). For each q < p and ε > 0, we have by definition
of the supremum

sup
q<p

F−1
X (q) + ε ≥ F−1

X (q)
(3)

=⇒ FX(sup
q<p

F−1
X (q) + ε) ≥ q.

So taking ε → 0 by right continuity of FX implies that FX(supq<p F
−1
X (q)) ≥ q for all q < p so

FX(supq<p F
−1
X (q)) ≥ p. Property 3 above implies that

sup
q<p

F−1
X (q) ≥ F−1

X (p).

This combined with monotonicity supq<p F
−1
X (q) ≤ F−1

X (p) implies that supq<p F
−1
X (q) = F−1

X (p)
as required.
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2 Important Continuous Random Variables

2.1 Uniform Distribution: U(a, b)

The uniform distribution models variables with equally likely outcomes on an interval. This is the
continuous analogue of the discrete uniform distribution.

Definition 3. We say that X has a continuous uniform distribution on (a, b) if X has PDF

fX(x) =

{
1
b−a x ∈ (a, b),

0 otherwise

This is denoted by
X ∼ U(a, b).

Example 1. The following experiments can be modeled by a continuous uniform distribution:

Experiment X Distribution
Cutting a stick of length 1 at a random position the location of the cut U(0, 1)
Spinning a wheel Location of spinner U(0, 2π)

2.1.1 Properties

1. Sampling uniformly on the intervals (a, b), [a, b), (a, b] and [a, b] are all equivalent.

2. Mean and Variance: If X ∼ U(a, b) then

E[X] =
a+ b

2
Var(X) =

(b− a)2

12

2.2 Exponential Distribution: Exp(θ)

The exponential distribution models the time between occurrences of a Poisson process with rate
parameter λ = 1

θ expressed in occurrences per time. The waiting time parameter (also called the
mean parameter) θ is expressed in time per occurrence. This is the continuous time analogue of the
geometric distribution.

Definition 4. We say that X has an exponential distribution with mean parameter θ if X has PDF

fX(x) =

{
1
θ e
− xθ x > 0,

0 x ≤ 0

This is denoted by X ∼ Exp(θ).

Example 2. The following experiments can be modeled by a exponential distribution:

Experiment X Distribution
Busses arriving at rate 3 per hour hours until a bus arrives Exp(3−1)
Busses arriving every 15 minutes minutes until a bus arrives Exp(15)
Emails arrive at a rate of 20 per hour hours until the next email Exp(20−1)

Remark 7. We can also parameterize the exponential random variable with the rate parameter. We
say that X has an exponential distribution with rate parameter λ if X has PDF

fX(x) =

{
λe−λx x > 0,

0 x ≤ 0

This is (unfortunately also) denoted by X ∼ Exp(λ). Unless otherwise stated, we will take the mean
parametrization as the standard one in this course since that is the one given in your formula sheet.
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2.2.1 Properties

1. Parameters: If a Poisson process has rate λ occurrences per time, then θ = 1
λ is the time per

occurrence.

2. Mean and Variance: If X ∼ Exp(θ) then

E[X] = θ Var(X) = θ2

3. Memoryless Property: The exponential distribution forgets how long we have waited already.

Theorem 3 (Memoryless property of Exp(θ))

If X ∼ Exp(θ), then
P(X > s+ t|X > s) = P(X > t).

In fact, the exponential distribution is the only continuous random variable with this property.

4. Computations with the exponential distribution can be expressed using the Gamma function

Definition 5 (Gamma function). The integral

Γ(α) =

∫ ∞
0

yα−1e−ydy, α > 0

is called the gamma function of α.

It satisfies the following nice properties

� Γ(n) = (n− 1)! for n ∈ N
� Γ(1/2) =

√
π

� Γ(α) = (α− 1)Γ(α− 1) for α > 1

� The Gamma function is a continuous function that interpolates the factorial function.

2.3 Example Problems

2.3.1 Applications

Problem 2.1. Suppose X ∼ U(0, 1), and that Y = 2
X − 1. What is the support of Y ?

Solution 2.1. Since supp(X) = [0, 1], we have

0 ≤ X ≤ 1 =⇒ ∞ >
2

X
≥ 2 =⇒ ∞ >

2

X
− 1 ≥ 1

so supp(Y ) = [1,∞).

Problem 2.2. Suppose that the angle measured from the principal axis to the point of a spinner is
uniformly distributed on [0, 2π]. You win the prize you want if the point lands in [ 3π

4 ,
3π
2 ]. Given that

the point will stop in the bottom half of the circle, what is the probability that you win the prize you
want.
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Solution 2.2. If X denotes the angle of the spinning wheel, then X ∼ U(0, 2π). Note that the bottom
half is the circle [π, 2π]. Denote by A1, A2 the events A1 = {X ∈ [π, 2π]} and A2 = {X ∈ [ 3π

4 ,
3π
2 ]}.

The desired probability is

P(A2 | A1) =
P(A1 ∩A2)

P(A1)
=

P(X ∈ [π, 2π] ∩ [ 3π
4 ,

3π
2 ])

P(X ∈ [π, 2π])

=
P(X ∈ [π, 3π

2 ])

P(X ∈ [π, 2π])

=
1

2π · (
3π
2 − π)

1
2π · (2π − π)

=
1/4

1/2
= 1/2

Problem 2.3. Nupur decided to enjoy a relaxing Summer away from student housing, so she rented
a place in Simcoe, Ontario. However, the busses there are far and few between. Suppose busses arrive
according to a Poisson process with an average of 3 busses per hour.

1. Find the probability of waiting at least 15 minutes.

2. Find the probability of waiting at least another 15 minutes given that you have already been
waiting for 6 minutes.

Solution 2.3.

Part 1: If X denotes the waiting time until the first bus in minutes, then the waiting time parameter
is θ = 20 min per bus so X ∼ Exp(20), and

P(X ≥ 15) =

∫ ∞
15

1

20
e−

1
20xdx = e−

3
60 ·15 = e−3/4

Alternative Solution: If X denotes the waiting time until the first bus in hours, then the waiting
time parameter is θ = 1

3 hours per bus (rate λ is 3 busses per hour) X ∼ Exp(3−1). Hence, the
probability of waiting at least 15 minutes is

P(X ≥ 1/4) =

∫ ∞
1/4

3e−3xdx = e−3· 14 .

Part 2: By the memoryless property, we have

P(X ≥ 15 + 6 |X ≥ 6) = P(X ≥ 15) = e−3/4

from above.

Problem 2.4. Exponential distribution is also very useful in reliability engineering. The lifetime of
a seat belt motor on a 1994 Saturn GL is known to follow an exponential distribution with mean 14
years.

1. What is the standard deviation of the lifetime of a seat belt motor on a 1994 Saturn GL?

2. Compute the probability that the lifetime of the seat belt motor will last more than 6 years.

3. If a seat belt motor has lasted 14 years, what is the probability that it will last another 6 years?
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Solution 2.4. In this problem we are given E[X] = 14 and X has exponential distribution so X ∼
Exp(14).

1. We have Var(X) = 142, so the standard deviation is 14 years.

2. We have

P(X ≥ 6) =

∫ ∞
6

1

14
e−

1
14 t dt = e−

6
14 .

3. By the memoryless property, we have

P(X ≥ 6 + 14 |X ≥ 14) = P(X ≥ 6) = e−
6
14 .

Problem 2.5. Suppose the waiting time X until Mukhtar’s next bus arrives follows an exponential
distribution with parameter θ = 1. What’s the waiting time w so that Mukhtar doesn’t have to wait
longer than w with probability 50%?

Solution 2.5. We know

FX(x) = P(X ≤ x) =

∫ x

0

e−t dt = 1− e−x

for x ≥ 0 and 0 otherwise. This function is strictly increasing on x > 0, so we can use the classical
inverse. We want w such that P(X ≤ w) = 0.5, or

FX(w) = 0.5⇔ 1− e−w = 0.5⇔ w = log(2) ≈ 0.693.

So with probability 50% Mukhtar won’t have to wait longer than log(2). In other words, log(2) is the
median of the distribution of X.

Remark 8. We can repeat this computation for general θ 6= 1. The median in this case will be given
by θ log(2). Since log(2) < 1 this implies that the median of the exponential is always below the mean.

Problem 2.6. Uranium 238 emits particles measured by a Geiger counter at a rate of 50 per second.
Assume that the number of particles measured by a Geiger counter follows a Poisson process. Let X
denote the amount of time in seconds between when the first and second particles are measured. Find
E[X]

Solution 2.6. By the homogeneous property and independence, the time between the first and sec-
ond particle is equal in distribution to the time between the first particle. Therefore, the waiting time
parameter θ is 1

50 seconds per occurrence, so X ∼ Exp(50−1). Therefore, E[X] = θ = 1
50 .

Careful Solution: We carefully explain how the homogeneous and independence property are used
in this problem. Let X be the time of the first particle, Y be the time from the first to the second
particle, and N(t) be the number of particles by time t. Clearly, Z = X + Y is the time of the second
particle.

We know X ∼ Exp(50−1) and N(t) ∼ Poi(50t). Using the same logic as in the derivation of the
Poisson process (see Problem (2.9)),

FZ(t) = P(X + Y ≤ t) = 1− P(X + Y > t) = 1− P (N(t) ≤ 1) = 1− (e−50t + e−50t(50t))

So Z = X + Y has density

fZ(t) =
d

dt
P(X + Y ≤ t) = − d

dt

[
e−50t(1 + 50t)

]
= t502e−50t
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Therefore, by an integration by parts

E[Z] =

∫ ∞
−∞

z · fZ(z)dz = 50

∫ ∞
0

z2 · 50e−50zdz = 50
2

502
=

2

50

and the linearity of expectation implies that

E[Y ] = E[Z −X] = E[Z]− E[X] =
2

50
− 1

50
=

1

50
.

Problem 2.7. A continuous random variable X is said to have a Gamma distribution with parameters
α > 0 and β > 0 if it has PDF

fX(x) =

{
1

Γ(α)βαx
α−1e−

x
β x ≥ 0

0 otherwise

Use the properties of the Gamma function, namely Γ(α) = (α− 1)Γ(α− 1) for α > 1, to obtain E[X]
and Var(x).

Solution 2.7. We can solve this problem without even knowing what the Γ(α) function is. We use a
trick that we have used many times, which involves rewriting the expression as an integral of the PDF
which sums to 1.

Expected Value: By definition,

E[X] =

∫ ∞
0

x · 1

Γ(α)βα
xα−1e−

x
β dx =

∫ ∞
0

1

Γ(α)βα
xαe−

x
β dx

=
βΓ(α+ 1)

Γ(α)

∫ ∞
0

1

Γ(α+ 1)βα+1
xαe−

x
β dx︸ ︷︷ ︸

=1 integral of the PDF of Γ(α+ 1, β) r.v.

where we multiplied and divided by βΓ(α + 1) to match the normalization terms. Since using the
recursive property of the Γ function, we see that

E[X] =
βΓ(α+ 1)

Γ(α)
=
βαΓ(α)

Γ(α)
= βα.

Variance: A similar computation as above implies that

E[X2] =

∫ ∞
0

x2 · 1

Γ(α)βα
xα−1e−

x
β dx =

∫ ∞
0

x2 · 1

Γ(α)βα
xα+1e−

x
β dx

=
β2Γ(α+ 2)

Γ(α)

∫ ∞
0

1

Γ(α+ 2)βα+2
xα+1e−

x
β dx︸ ︷︷ ︸

=1 integral of the PDF of Γ(α+ 2, β) r.v.

=
β2Γ(α+ 2)

Γ(α)
.

Next, using the recursive properties of the Γ function,

E[X2] =
β2Γ(α+ 2)

Γ(α)
=
β2(α+ 1)Γ(α+ 1)

Γ(α)
=
β2(α+ 1)αΓ(α)

Γ(α)
= β2(α+ 1)α.

Therefore,
Var(x) = E[X2]− (E[X])2 = β2(α+ 1)α− β2α2 = β2α.

Remark 9. Notice that then α = 1, then the PDF is simply the exponential distribution. In fact, the
relation is even deeper and it can be shown that the sum of n independent Exp(β) distributions has a
Γ(n, β) distribution.
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2.3.2 Derivations and Proofs

Problem 2.8. Compute the mean and variance of X ∼ U(a, b).

Solution 2.8. We can directly compute

E(X) =

∫ ∞
−∞

xf(x) dx =

∫ b

a

x · 1

b− a
dx

=
1

2

b2 − a2

b− a
=

(b− a)(b+ a)

2(b− a)
=
a+ b

2
.

To compute the variance, we have

E(X2) =

∫ ∞
−∞

x2f(x) dx =

∫ b

a

x2 1

b− a
dx

=
b3 − a3

3(b− a)
=

(b− a)(b2 + ab+ a2)

3(b− a)
=
b2 + ab+ a2

3
.

so after some algebra,

Var(X) = E(X2)− E(X)2 =
b2 + ab+ a2

3
− (a+ b)2

4
=

(b− a)2

12
.

Problem 2.9. Let N(t) be a Poisson process with rate λ occurrences per time interval. If X is the
length of time until the first occurrence, show that X ∼ Exp(λ−1).

Solution 2.9. Since P(X ≤ 0) = 0, it remains to consider x > 0. We start by computing the CDF of
X, which is the length of time until first event occurs

FX(t) = P(X ≤ t)
= P(time to 1st occurrence ≤ t)
= 1− P(time to first occurrence > t)

= 1− P(no occurrence between (0, t))

We know how to model the number of event occurrences between time (0, t) since it is Poi(λt). Let
N(t) ∼ Poi(λt). Then

FX(t) = 1− P(no occurrence between (0, t))

= 1− P(N(t) = 0)

= 1− e−λt(λt)0

0!

= 1− e−λt.

So we have FX(t) = 1− exp(−λt) for t > 0 and FX(t) = 0 otherwise. We can take the derivative with
respect to t for t > 0, to obtain the PDF

fX(t) =
d

dt
FX(t) = λ exp(−λt)

and fX(t) = 0 for t ≤ 0. We recognize this PDF as the one corresponding to Exp(λ−1) (with waiting
time parameter θ = 1

λ ).
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Remark 10. The (actual) Poisson process N(t) counts the number of occurrences up to time t.
While X is the waiting time until the first occurrence. By independent increments and homogeneous
property, the waiting time between occurrences has the same distribution as the waiting time until
the first occurrence. This means that the exponential distribution Exp(λ−1) models the waiting time
between each event occurrence in a Poisson distribution with rate λ.

Problem 2.10. Let n ≥ 1. Show that

Γ(n) =

∫ ∞
0

yn−1e−ydy = (n− 1)!.

Solution 2.10. This follows from repeated integration by parts. Let n ≥ 1, we have

Γ(n) =

∫ ∞
0

yn−1e−ydy.

Integrating by parts we see that

± D I

+ yn−1 e−y

− (n− 1)yn−2 −e−y

so

Γ(n) =

∫ ∞
0

yn−1e−ydy = −yn−1e−y
∣∣∣∣∞
0

+ (n− 1)

∫ ∞
0

yn−2e−ydy = (n− 1)Γ(n− 1).

Repeating this inductively implies that

Γ(n) = (n− 1)Γ(n− 1) = (n− 1)(n− 2)Γ(n− 2) = · · · = (n− 1)(n− 2) · · · 3 · 2 · Γ(1) = n!

since Γ(1) = 1 (using the fact that the integral of the PDF of X ∼ Exp(1) is 1).

Remark 11. Notice that the integration by parts computation holds for α > 1 which are not neces-
sarily integer valued to conclude that Γ(α) = (α− 1)Γ(α− 1). The problem is that the inductive step
might not lead to a nice number since Γ(x) for x < 1 doesn’t necessarily simplify.

Problem 2.11. Compute the mean and variance of X ∼ Exp(θ).

Solution 2.11. We use the change of variable x = yθ with dx = θdy

E[X] =

∫ ∞
0

x · 1

θ
e−

x
θ dx

(x=yθ)
=

∫ ∞
0

ye−yθdy

= θ

∫ ∞
0

ye−ydy︸ ︷︷ ︸
=Γ(2)

= θΓ(2) = θ · (1!) = θ.

To compute the variance, we have

E[X2] =

∫ ∞
0

x2 · 1

θ
e−

x
θ dx

(x=yθ)
=

∫ ∞
0

θy2e−yθdy

= θ2

∫ ∞
0

y3−1e−ydy︸ ︷︷ ︸
=Γ(3)

= θ2Γ(3) = θ · (2!) = 2θ2.
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so
Var(X) = E[X2]− E[X]2 = 2θ2 − θ2 = θ2

Alternative Solution: We can also integrate by parts directly without using the Gamma function.
Starting with

E[X] =

∫ ∞
0

x · 1

θ
e−

x
θ dx

we have by integrating by parts

± D I

+ x
θ e−

x
θ

− 1
θ −θe− xθ

+ 0 θ2e−
x
θ

so

E[X] =

∫ ∞
0

x · 1

θ
e−

x
θ dx =

x

θ
· (−θe− xθ )− 1

θ
θ2e−

x
θ

∣∣∣∣∞
0

= θ.

Next, to compute

E[X2] =

∫ ∞
0

x2 · 1

θ
e−

x
θ dx

we have by integrating by parts

± D I

+ x2

θ e−
x
θ

− 2x
θ −θe− xθ

+ 2
θ θ2e−

x
θ

− 0 −θ3e−
x
θ

so

E[X2] =

∫ ∞
0

x2 · 1

θ
e−

x
θ dx =

x2

θ
· (−θe− xθ )− 2x

θ
· θ2e−

x
θ +

2

θ
· (−θ3e−

x
θ )

∣∣∣∣∞
0

= 2θ2.

Problem 2.12. Prove the memoryless property: Theorem 3.

Solution 2.12. Recall the CDF of X ∼ Exp(θ) is

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(t)dt =

∫ x

0

θ−1e−t/θ dt = 1− e−x/θ, x > 0.

Therefore,
P(X > x) = 1− P(X ≤ x) = 1− FX(x) = e−x/θ.

Hence,

P(X > s+ t |X > s) =
P(X > s+ t and X > s)

P(X > s)

=
P(X > s+ t)

P(X > s)
=
e−(s+t)/θ

e−s/θ

= e−t/θ = P(X > t)

as desired.

Page 16 of 17



April 6, 2024 STAT230 – Week 8 Justin Ko

Problem 2.13. (?) Prove that Γ( 1
2 ) =

√
π.

Solution 2.13. We have

Γ
(1

2

)
=

∫ ∞
0

y
1
2−1e−ydy =

∫ ∞
0

y−
1
2 e−ydy

We can do the change of variables y = x2

2 , dy = x dx so

Γ
(1

2

)
=
√

2

∫ ∞
0

e−
x2

2 dx.

By Fubini’s theorem and a change of variables into polar coordinates

Γ
(1

2

)2

= 2

(∫ ∞
0

e−
x2

2 dx

)2

= 2

∫ ∞
0

e−
x2

2 dx

∫ ∞
0

e−
y2

2 dy = 2

∫ ∞
0

∫ ∞
0

e−
x2+y2

2 dxdy

= 2

∫ π
2

0

e−
r2

2 r drdθ

= 2

∫ π
2

0

dθ = π.

So Γ
(

1
2

)
=
√
π.

Remark 12. A modification of this argument can be used to compute the normalization constant of
a standard Gaussian random variable we will see next week.
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