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1 Variance

1.1 Summarizing Random Variables - Variance

The expected value is insufficient to capture all the interesting behavior of a random variable. The
second key theoretical value is the “deviations” of the random variable from its expected value. There
are several ways to measure this deviation. Let E[X] = µ.

1. Deviation
E[(X − µ)] = E[X]− µ = 0

2. Absolute deviation
E [|X − µ|]

3. Squared deviation
E
[
(X − µ)2

]
Definition 1. The variance of X, denoted by Var[X], is the non-negative number

Var[X] = E
[
(X − E[X])2

]
.

The variance is in the squared units, so the standard deviation defined by

SD(X) =
√

Var[X]

measures the deviation in the original units.

1.1.1 Properties

1. Equivalent formula I:
Var(X) = E[X2]− (E[X])2.

2. Equivalent formula II:
Var(X) = E[X(X − 1)] + E[X]− (E[X])2

3. Variance of Linear Functions: For any constants a, b ∈ R,

Var(aX + b) = a2 Var(X)

4. Variance of Linear Functions II: If X and Y are independent then

Var(X + Y ) = Var(X) + Var(Y )

5. Zero Variance: Suppose a random variable X has E[X] = µ and Var(X) = 0. This means, X
does not “vary” from its mean at all, and is constant with probability 1

Theorem 1

Var(X) = 0 if and only if P(X = E[X]) = 1.
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1.1.2 Variance of Common Distributions

1. Uniform: If X ∼ U[a, b] then Var(X) = (b−a+1)2−1
12 .

2. Hypergeometric: If X ∼ Hyp(N, r, n), then Var(X) = n r
N

(
1− r

N

) (
N−n
N−1

)
.

3. Binomial: If X ∼ Bin(n, p) then Var(X) = np(1− p).

4. Negative Binomial: If X ∼ NegBin(k, p), then Var(X) = k(1−p)
p2 .

5. Poisson: If X ∼ Poi(µ), then Var(X) = µ.

Since X ∼ Ber(p) ∼ Bin(1, p) and X ∼ Geo(p) ∼ NegBin(1, p) we get the following for free,

1. Bernoulli: If X ∼ Ber(p) then Var(X) = p(1− p).

2. Geometric: If X ∼ Geo(p) then Var(X) = 1−p
p2 .

1.2 Higher Order Moments

The expectation and the variance give a simple summary of the distribution giving the center and
variability of the distribution. The generalizations of these concepts give more summaries of the
behavior of distributions

� Moments: The kth moment of the distribution of X, is E[Xk].

� Central Moments: The kth central moment of the distribution of X is E[(X − E(X))k].

� There are also other statistics such as

– Skewness (measures asymmetry)

E

( (X − E(X))√
Var(X)

)3


– Kurtosis (measures heavy tailedness)

E

( (X − E(X))√
Var(X)

)4


1.3 Example Problems

1.3.1 Applications

Problem 1.1. Consider the random variables

� X is a r.v. representing the outcome of one fair 6-sided die roll

� Y is a r.v. representing the number of phone calls over 1 minute at Lenovo call centre, with the
rate of 3.5 calls per minute

Compute the mean and variance of X and Y .
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Solution 1.1. Using the formulas for mean and variance, we have

E[X] = 3.5,Var(X) =
62 − 1

12
≈ 2.9

while
E[Y ] = 3.5,Var(Y ) = 3.5.

This makes intuitive sense because both X and Y have the same mean, but the fact that Y can take
values on N while X can only take values on {1, 2, . . . , 6}, so Y should have larger variance even though
both random variables have the same mean.

Problem 1.2. Suppose a fair coin is flipped 1,000 times, and let X denote the number of heads
observed. What is the standard deviation of X?

Solution 1.2. We have X ∼ Bin(1000, 0.5), so

SD(X) =
√

Var(X) =
√

1000(0.5)(1− 0.5) ≈ 15.81.

Problem 1.3. Suppose that X has variance Var(X) = 2. Compute the variance of Y , where Y =
−2X + 3.

Solution 1.3. By the variance of linear maps,

Var(Y ) = Var(−2X + 3) = (−2)2 Var(X) = 8.

Problem 1.4. Which PMF is the figure most likely showing?

0 5 10 15 20 25

0.
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0.
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0.
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0.
15

0.
20

0.
25

x

f(
x)

1. Poi(1)

2. Geo(0.25)
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3. NegBin(5, 0.75)

4. Bin(25, 0.25)

Solution 1.4. The PDF is strictly decreasing so it cannot be negative binomial (for k ≥ 2) or binomial
since the binomial coefficient means the PMFs have a bump. The Poi(µ) distribution is strictly de-
creasing for µ < 1 and has a bump for µ > 1. When µ = 0 then it turns out that P(X = 0) = P(X = 1).
This means that the Geo(0.25) is the only possibility.

Alternative Solution: We can also look at fX(0) which is 0.25 to determine if it is Poisson or
geometric random variable. If X ∼ Geo(0.25) then fX(0) = 0.25. While if X ∼ Poi(1) then
fX(0) = e−1 ≈ 0.36, so the PMF is the one of the Geometric random variable.

Problem 1.5. Consider the following PMF
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Geo(0.25)
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Poi(5)

Which is TRUE?

1. P(X = 25) is much larger for the distribution on the left than for the distribution on the right.

2. P(X = 25) is much larger for the distribution on the right than for the distribution on the left.

3. P(X = 25) is about the same for the distributions on the left and on the right.

Solution 1.5. It is hard to see from the picture, but we can explicitly compute the probabilities. Let
X ∼ Geo(0.25) and Y ∼ Poi(5).

fX(0.25) = 0.25(1− 0.25)25 ≈ 0.0002 fY (25) = e−5
525

25!
≈ 1.3× 10−10.

The PMFs on the log scale is shown below
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1.3.2 Derivations and Proofs

Problem 1.6. Show that

Var(X) = E[X2]− (E[X])2 = E[X(X − 1)] + E[X]− (E[X])2.

Solution 1.6. To simplify notation, we define E[X] = µ. Then by the linearity of expectation,

Var(X) = E[(X − µ)2] = E[X2 − 2µX + µ2] = E[X2]− 2µE[X] + µ2 = E[X2]− µ2 = E[X2]− (E[X])2.

To conclude the second equality, notice that

E[X(X − 1)] = E[X2 −X] = E[X2]− E[X] =⇒ E[X2] = E[X(X − 1)] + E[X]

so substituting this into the formula above implies

Var(X) = E[X2]− (E[X])2 = E[X(X − 1)] + E[X]− (E[X])2.

Problem 1.7. Show that for any constants a and b,

Var(aX + b) = a2 Var(X).

Solution 1.7. We can use the definition of the variance. Let Y = aX + b,

Var(aX + b) = Var(Y ) = E[(Y − E[Y ])2] = E[(aX + b− E[aX + b])2]

E[aX + b] = aE[X] + b = E[(aX − aE[X])2]

= a2 E[(X − E[X])2] = a2 Var(X).

Remark 1. This makes intuitive sense because shifting a random variable by b does not change the
spread of the random variables. However, scaling the random variable by a will change the spread by
a factor of a2 since we are measuring the squared deviations, so the scaling factor is squared.
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Problem 1.8. Prove Theorem 1.

Solution 1.8. Let E[X] = µ.

( =⇒ ) Suppose P(X = µ) = 1. In other words, fX(µ) = 1 and there are no other non-zero val-
ues of the PMF, so by definition of the variance,

Var(X) = E((X − µ)2) = E[X2]− E[X]2 = µ2 P(X = µ)− (µP(X = µ))2 = 0.

(⇐= ) Conversely, suppose V ar(X) = 0. Then, again by definition of the variance,

0 = Var(X) = E((X − µ)2) =
∑
all x

(x− µ)2︸ ︷︷ ︸
≥0

P(X = x)︸ ︷︷ ︸
=fX(x)≥0

.

Suppose for the sake of contradiction that there exists a ν 6= µ such that P(X = ν) > 0. In this case,
we have

Var(X) ≥ (ν − µ)2 P(X = ν) > 0

which contradicts the fact that Var(X) = 0. Therefore, we must have P(X = µ) = 1.

Problem 1.9. If X ∼ U[a, b] then E[X] = (b−a+1)2−1
12 .

Solution 1.9. If X ∼ U[0, n] then the sum of positive integers implies

E[X2] =

n∑
x=0

x

n+ 1
=
n(n+ 1)

2(n+ 1)
=
n

2
, E[X2] =

n∑
x=0

x2

n+ 1
=
n(n+ 1)(2n+ 1)

6(n+ 1)
=
n(2n+ 1)

6

so

Var(X) = E[X2]− E[X]2 =
n(2n+ 1)

6
− n2

4
=

(n+ 1)2 − 1

12
.

Notice that X ∼ U[a, b] ∼ a+ U[0, b− a]. Therefore, if we let Y ∼ U[0, b− a], then X = a+ Y so
the variance of a linear function implies that

Var(X) = Var(a+ Y ) = Var(Y ) =
(b− a+ 1)2 − 1

12
.

Problem 1.10. (∗) If X ∼ Hyp(N, r, n), then Var(X) = n r
N

(
1− r

N

) (
N−n
N−1

)
.

Solution 1.10. This proof uses a trick called the linearity of expectation. To simplify notation,
suppose that we have r blue balls and N − r red balls, then X ∼ Hyp(N, r, n) denotes the number of
blue balls we drew from a sample of n balls without replacement. We first compute E[X(X − 1)]. It
suffices to compute

E
[(X

2

)]
= E

[X(X − 1)

2

]
which denotes the expected value of the number of pairs of blue balls we drew.

We label the successful balls 1, . . . , r and let Aij denote the event that the pair of balls labeled i
and j was drawn where. Consider the random variable

1Aij =

{
1 if we drew the pair of blue balls i and j

0 if we did not draw the pair of blue balls i and j.
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If X ∼ Hyp(N, r, n) then
(
X
2

)
=
∑

1≤i<j≤r 1Aij which is the total number of pairs of blue balls that
we drew. We have by the linearity of expectation that

E
[(X

2

)]
= E

[ ∑
1≤i<j≤r

1Aij

]
=

∑
1≤i<j≤r

E[1Aij ].

Next, for any i, j, we have

E[1Aij ] = 1P(Aij) + 0 · (1− P(Aij)) = P(Aij).

By symmetry (we are not more likely to draw a particular ball over another one), for all 1 ≤ i < j ≤ r

P(Aij) = P(A12) = P( we drew the pair of blue balls i and j ) =

(
2
2

)(
N−2
n−2

)(
N
n

) =
n(n− 1)

N(N − 1)

so

E
[(X

2

)]
=

∑
1≤i<j≤r

E[1(Aij)] =
r(r − 1)

2
P(A12) =

r(r − 1)

2

n(n− 1)

N(N − 1)
.

Multiplying by two implies that

E[X(X − 1)] = 2E
[(X

2

)]
= 2E

[X(X − 1)

2

]
=
r(r − 1)n(n− 1)

N(N − 1)
.

Since we know that E[X] = r nN we have

Var(X) = E[X(X−1)] +E[X]− (E[X])2 =
r(r − 1)n(n− 1)

N(N − 1)
+
rn

N
− r

2n2

N2
= n

r

N

(
1− r

N

)(N − n
N − 1

)
.

Remark 2. We can set p = r
N which denotes the probability of a successful draw. If X ∼ Hyp(N, r, n)

and Y ∼ Bin(n, p) then

E[X] = np Var(X) = np(1− p)
(
N − n
N − 1

)
.

and
E[Y ] = np Var(Y ) = np(1− p).

The hypergeometric and binomial random variable have the same mean, and they have the same
variance except for a factor N−n

N−1 ≤ 1. The variance of the hypergeometric is slightly less because
sampling without replacement reduces the “spread” since our sample space shrinks with each draw.

When n = 1 then the factor N−n
N−1 = 1, so the variance of a hypergeometric and binomial random

variables are the same, since sampling one object with or without replacement is the same. When
N → ∞ then the factor N−n

N−1 = 1, which is again consistent because sampling with or without
replacement from a large population is essentially the same.

Problem 1.11. If X ∼ Bin(n, p) then Var(X) = np(1− p).

Solution 1.11. If X ∼ Bin(n, p) then fX(x) =
(
n
x

)
px(1− p)n−x. We use the formula

Var(X) = E(X(X − 1)) + E(X)− (E(X))2
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and note we already know E(X) = np. By definition

E(X(X − 1)) =

n∑
x=0

x(x− 1)
n!

(n− x)!x!
px(1− p)n−x

= n(n− 1)p2
n∑
x=2

(n− 2)!

(n− 2− (x− 2))!(x− 2)!
px−2(1− p)n−2−(x−2)

= n(n− 1)p2
n−2∑
y=0

(n− 2)!

(n− 2− y)!y!
py(1− p)n−2−y︸ ︷︷ ︸

=1 sum of PMF of (n− 2, p)

= n(n− 1)p2.

Then
Var(X) = E[X(X − 1)] + E[X]− (E[X])2 = n(n− 1)p2 + np− (np)2 = np(1− p).

Alternative Solution: If X ∼ Bern(p) then by definition

Var(X) = E[(X − p)2] = (1− p)2p+ (−p)2(1− p) = p(1− p).

Now suppose that X ∼ Bin(n, p). Since X = X1+· · ·+Xn where Xi are independent and X ∼ Bern(p)
(the number of successes in n trials is equal to the sum of n successful trials), linearity implies that

Var(X) = Var(X1 + . . . Xn) = nVar(X1) = np(1− p).

Problem 1.12. (∗) If X ∼ NegBin(k, p), show that Var(X) = k(1−p)
p2 .

Solution 1.12. We first consider the geometric random variable. We will use many times throughout
this derivation the identity

∞∑
k=0

qk =
1

1− q

for |q| < 1. From this identity, we can recover higher order versions of this by differentiating the power
series term by term with respect to q, that is

d

dq

∞∑
k=0

qk =
d

dq

1

1− q
=⇒

∞∑
k=1

kqk−1 =
1

(1− q)2

and
d2

dq2

∞∑
k=0

qk =
d

dq2
1

1− q
=⇒

∞∑
k=2

k(k − 1)qk−2 =
2

(1− q)3

We will use these identities to give a different derivative of the first and second moments of a geometric
random variable.

If X ∼ Geo(p) ∼ NegBin(1, p) then fX(x) = p(1− p)x so the first derivative identity implies that

E[X] =

∞∑
x=0

xp(1− p)x =

∞∑
x=1

xp(1− p)x = p(1− p)
∞∑
x=1

x(1− p)x−1 =
p(1− p)

(1− (1− p))2
=

(1− p)
p

.

Likewise, the second derivative identity implies that

E[X(X − 1)] =

∞∑
x=0

x(x− 1)p(1− p)x = p(1− p)2
∞∑
x=2

x(x− 1)(1− p)x−2 =
2p(1− p)2

(1− (1− p))3
=

2(1− p)2

p2
.
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Therefore,

Var(X) = E[X(X − 1)] + E[X]− (E[X])2 =
2(1− p)2

p2
+

(1− p)
p

− (1− p)2

p2
=

(1− p)
p2

.

Now suppose that X ∼ NegBin(k, p). For 1 ≤ i ≤ k, let Xi denote the number of fails between the
(i − 1)st success and the ith success. Since Xi counts the number of fails until the next success, we
have Xi ∼ Geo(p) for all i and the Xi are independent. By definition, X = X1 + · · · + Xk since the
total fails until k successes is equal to the sum of the number fails between successes, linearity implies
that

Var(X) = Var(X1 + . . . Xk) = kVar(X1) =
k(1− p)
p2

.

Problem 1.13. If X ∼ Poi(µ), show that Var(X) = µ.

Solution 1.13. If X ∼ Pois(µ) then fX(x) = e−µ µ
x

x! . We use the formula

Var(X) = E[X(X − 1)] + E[X]− (E[X])2

and note we already know E(X) = µ. By definition

E[X(X − 1)] =

∞∑
x=0

x(x− 1) · e−µµ
x

x!

=

∞∑
x=2

x(x− 1) · e−µµ
x

x!
0 · e−µµ

0

0!
= 0

= µ2
∞∑
x=2

e−µ
µx−2

(x− 2)!

= µ2
∞∑
y=0

e−µ
µy

y!︸ ︷︷ ︸
=1 sum of PMF of Poi(µ)

re-index sum

= µ2.

Then
Var(X) = E(X(X − 1)) + E(X)− (E(X))2 = µ2 + µ− (µ)2 = µ.
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2 Continuous Random Variables

Recall the two “informal” classifications of random variables we consider in this course.

� We say that a random variable is discrete if its range is a discrete subset of R (i.e., a finite or a
countably infinite set).

� A random variable is continuous if its range is an interval that is a subset of R (e.g. [0, 1], (0,∞),R).

The definition of the CDF of discrete and continuous random variables are identical.

Definition 2. The cumulative distribution function (CDF) of a random variable X is

FX(x) = P(X ≤ x) := P({ω ∈ S : X(ω) ≤ x}), x ∈ R.

From the point of CDFs, we have the following natural classifications of random variables.

Definition 3. If the CDF of X is

1. a piecewise constant function, then X is a discrete random variable.

2. a continuous function, then X is a continuous random variable.

Remark 3. It is possible that a CDF does not fall under either of these categories, such as mixed
random variables with have CDFs with both jump discontinuities and strictly increasing parts.

Since the intervals (a, b] and (−∞, a] are disjoint,

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a) = FX(b)− FX(a).

If X is a continuous random variable, then for any x ∈ R,

P(X = x) = lim
ε→0

P(x− ε < X ≤ x) = FX(x)− FX(x−) = 0

by continuity of FX . This implies that the inequalities don’t matter for continuous random variables

P(a < X ≤ b) = P(a < X < b) = P(a ≤ X < b) = P(a ≤ X ≤ b) = FX(b)− FX(a).

Remark 4. If X is discrete, then the inequalities matter, so

P(a < X ≤ b), P(a < X < b), P(a ≤ X < b), P(a ≤ X ≤ b)

can be different since P(X = a) or P(X = b) may be non-zero.

2.1 Probability Density Function (PDF)

We can try to define the PMF for a continuous random variable, but the fact that P(X = x) = 0 for
all x ∈ R is problematic. We get around this by defining a new way to encode how likely a certain
value x is without defining it as a probability.

Definition 4. We say that a continuous random variable X with distribution function FX is absolutely
continuous if it is the antiderivative of some function fX ,

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(t) dt.
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Remark 5. It might be the case that FX(x) is not differentiable at isolated points. However, if fX(x)
is continuous at x, then

F ′X(x) =
d

dx
FX(x) = fX(x).

Likewise, jump discontinuities of fX correspond to non-differentiable points of FX .

Definition 5. The function fX is called the probability density function (PDF) fX(x) and it satisfies
the following properties

1. fX(x) ≥ 0 for all x ∈ R;

2.
∫∞
−∞ fX(x)dx = 1;

The support of fX (or X) is the closure of the set of non-zero values of the PDF,

supp(fX) = cl({x ∈ R : fX(x) 6= 0}).

Remark 6. By convention we take the closure of the set, which means that we always include the
endpoints of intervals in the support. This is not a big issue since fX(x) can be arbitrarily defined at
the endpoints since the area under the PDF does not change if we redefine the endpoints.

The PDF fX(x) is proportional to the probability that X lies in a small interval around x in the
sense that for ε small

P
(
x− ε

2
≤ X ≤ x+

ε

2

)
=

∫ x+ ε
2

x− ε2
fX(x) dt ≈ εfX(x).

So fX(x) isn’t the probability that X = x, but it encodes the likelihood of x compared to other values.

Remark 7. In this course, unless otherwise stated, all continuous random variables will be absolutely
continuous so we often drop the prefix “absolutely”.

2.2 Expected Value and Variance

The expected value and variance of a random variable can be defined analogously to the discrete
random variables where the sum is now replaced by an integral.

Definition 6. If X is a continuous random variable with PDF fX(x), and g : R → R is a function,
then

E[g(X)] =

∫ ∞
−∞

g(x)fX(x) dx,

provided the expression exists.

It follows that for continuous random variables,

E[X] =

∫ ∞
−∞

xfX(x)dx

and

Var(X) = E[(X − E[X])2] =

∫ ∞
−∞

(x− E[X])2fX(x)dx.

This is analogous to how the expected value and variance of discrete random variables were defined,
but the sum over the PMF is replaced with an integral over the PDF.
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2.3 Example Problems

2.3.1 Applications

Problem 2.1. Suppose we are cutting a stick of length 1 randomly and denote by X the cutting
point. The random variable X is continuous with range [0, 1].

1. Approximate X with a discrete uniform distribution on { 1
10 ,

2
10 . . . , 1}. Draw the PMF and CDF.

2. Approximate X with a discrete uniform distribution on { 1
20 ,

2
20 . . . , 1}. Draw the PMF and CDF.

3. Approximate X with a discrete uniform distribution on { 1
100 ,

2
100 . . . , 1}. Draw the PMF and

CDF.

4. Approximate X with a discrete uniform distribution on { 1
10000 ,

2
10000 . . . , 1}. Draw the PMF and

CDF.

Solution 2.1.

1. We have fX(x) = 1
10 for all x ∈ { 1

10 ,
2
10 . . . , 1}.

0.2 0.4 0.6 0.8 1.0

0.
06

0.
08

0.
10

0.
12

0.
14

Discr. unif. on {1/10, 2/10,... 1}
x

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Discr. unif. on {1/10, 2/10,... 1}
x

F
(x

)

2. We have fX(x) = 1
20 for all { 1

20 ,
2
20 . . . , 1}.

0.2 0.4 0.6 0.8 1.0

0.
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0.
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05

0.
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Discr. unif. on {1/20, 2/20,... 1}
x

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
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0.
4

0.
6

0.
8

1.
0

Discr. unif. on {1/20, 2/20,... 1}
x

F
(x

)

3. We have fX(x) = 1
100 for all x ∈ { 1

100 ,
2

100 . . . , 1}
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0.0 0.2 0.4 0.6 0.8 1.0

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4

Discr. unif. on {1/100, 2/100,... 1}
x

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Discr. unif. on {1/100, 2/100,... 1}
x

F
(x

)

4. We have fX(x) = 1
10000 for all x ∈ { 1

10000 ,
2

10000 . . . , 1}.
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4

0.
6

0.
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0

Discr. unif. on {1/10000, 2/10000,... 1}
x

F
(x

)

Remark 8. Notice that the PMF gradually tends to 0 and the CDF gets closer to CDF of the
continuous uniform distribution on [0, 1].

Problem 2.2. Suppose that X is a continuous random variable with PDF

fX(x) =

{
cx(1− x) if 0 ≤ x ≤ 1,

0 otherwise

1. Compute c so that this is a valid pdf.

2. Compute the cdf FX(x).

3. Compute P(1/4 ≤ X ≤ 3/4)

Solution 2.2.

1. We need
∫∞
−∞ fX(x) dx = 1, so∫ 1

0

cx(1− x) dx =
c

6
= 1 =⇒ c = 6.
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2. The CDF FX(x) is

FX(x) =

∫ x

−∞
fX(t) dt =

∫ x

0

6t(1− t) dt = 3x2 − 2x3, x ∈ [0, 1]

and FX(x) = 0 for x ≤ 0 and FX(x) = 1 for x ≥ 1.
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ib
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fu
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tio

n 
F

(x
)=

P
(X

<
=

x)

3. We compute the probability using the CDF:

P
(

1

4
≤ X ≤ 3

4

)
cont.
= P

(
1

4
< X ≤ 3

4

)
= P(X ≤ 3/4)− P (X ≤ 1/4)

= FX(3/4)− FX(1/4) = 11/16.
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Alternative Solution: By integrating the PDF

P(1/4 ≤ X ≤ 3/4) =

∫ 3/4

1/4

fX(t) dt = 11/16.

Problem 2.3. Suppose the random variable X has PDF

fX(x) =

{
6x(1− x) if 0 ≤ x ≤ 1,

0 otherwise

Compute E(X) and Var(X).

Solution 2.3. By definition,

E(X) =

∫ 1

0

x · 6x(1− x) dx =
1

2

and

E(X2) =

∫ 1

0

x2 · 6x(1− x) dx =
3

10
.

Therefore,

Var(X) = E(X2)− (E(X))2 =
3

10
−
(

1

2

)2

=
1

20
= 0.05

Problem 2.4. Suppose X has PDF fX(x), and fX is an even function about the origin on R (i.e.
fX(x) = fX(−x)). If E[X] is well defined, show that E[X] = 0.
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Solution 2.4. Since fX(x) = fX(−x), the “positive and negative areas” cancel since x · fX(x) is an
odd function. To see this directly, notice that

E(X) =

∫ ∞
−∞

x · fX(x) dx

=

∫ 0

−∞
x · fX(x) dx+

∫ ∞
0

x · fX(x) dx

=

∫ ∞
0

(−x) fX(−x)︸ ︷︷ ︸
=fX(x)

dx+

∫ ∞
0

x · fX(x) dx

= −
∫ ∞
0

x · fX(x) dx+

∫ ∞
0

x · fX(x) dx

= 0

Page 16 of 16


	Variance
	Summarizing Random Variables - Variance
	Properties
	Variance of Common Distributions

	Higher Order Moments
	Example Problems
	Applications
	Derivations and Proofs


	Continuous Random Variables
	Probability Density Function (PDF)
	Expected Value and Variance
	Example Problems
	Applications



