
March 29, 2024 STAT230 – Week 6 Justin Ko

1 Expected Value

1.1 Summarizing Data

We want to extract information from large amounts of data. Let x1, x2, . . . , xn be n realizations of
a random variable X (such a set is called a sample).

1.1.1 Visualizing Data

1. Frequency Table: A table containing the number of times each value of X occurred.

2. Frequency Histogram: A histogram of the number of times each value of X occurred.

1.1.2 Summary Statistics

1. Sample Mean: The average of all realizations, defined by

x̄ =
1

n

n∑
i=1

xi

2. Sample Median: A value such that half of the results are below it and the other half above
it, when the sample is arranged in numerical order. By convention, we take the middle of two
values if there are an even number of observations.

3. Sample Mode: The most frequently-occuring values in a sample. There may be more than one.

Example 1. Consider 50 rolls of a dice. The frequency table and corresponding histogram are below

Outcome 1 2 3 4 5 6
Frequency 11 6 7 10 9 7

1 2 3 4 5 6
0

5

10

15

We also have that the summary statistics are

1. Sample Mean: We see that 1×11+2×6+3×7+4×10+5×9+6·7
50 = 3.42.

2. Sample Median: Looking at the 25th and 26th ordered result, we see that the median is 4.

3. Sample Mode: The outcome with the largest frequency is 1.
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1.2 Summarizing Random Variables - Expected Value

Instead of computing the summary statistics of large amounts of samples, we can compute its theo-
retical values if we know the distribution of the random variable. The first key theoretical value is the
“balancing point” of the random variable, also known as the expected value, first moment, or mean.

Definition 1. Suppose X is a discrete random variable with probability function fX(x). The expected
value of X, denoted by E[X], is the number

E[X] =
∑

x∈X(S)

xfX(x) =
∑

x∈X(S)

xP(X = x),

provided the sum converges absolutely (that is, if
∑
x∈X(S) |x| fX(x) <∞).

Remark 1. The sample mean of many realizations of X converges to E[X]. This is called the law of
large numbers.

1.2.1 Properties

1. Law of the Unconscious Statistician: If g : R → R, and X is a random variable with PMF fX ,
then g(X) is a random variable taking values g(X(S)) and

E[g(X)] =
∑

x∈X(S)

g(x)fX(x)

2. Linearity: Suppose the random variable X has E[X] = µ. Then for any constants a, b ∈ R,

E[aX + b] = aµ+ b = aE[X] + b

3. Linearity II:: Suppose that X and Y are random variables. Then

E[X + Y ] = E[X] + E[Y ].

Remark 2. In general E[g(X)] 6= g[E(X)]. However, if g is convex then

E[g(X)] ≥ g(E[X]).

This is called Jensen’s inequality.

Remark 3. The fact that a is a constant is very important in the first linearity property. If X and
Y are random variables, then in general E[XY ] 6= E[X]E[Y ], unless X and Y are independent.

1.2.2 Expected Value of Common Distributions

1. Uniform: If X ∼ U[a, b] then E[X] = a+b
2 .

2. Hypergeometric: If X ∼ Hyp(N, r, n), then E[X] = r nN .

3. Binomial: If X ∼ Bin(n, p) then E[X] = np.

4. Negative Binomial: If X ∼ NegBin(k, p), then E[X] = k(1−p)
p .

5. Poisson: If X ∼ Poi(µ), then E[X] = µ.

Since X ∼ Ber(p) ∼ Bin(1, p) and X ∼ Geo(p) ∼ NegBin(1, p) we get the following for free,

1. Bernoulli: If X ∼ Ber(p) then E[X] = p.

2. Geometric: If X ∼ Geo(p) then E[X] = 1−p
p .
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1.3 Example Problems

1.3.1 Applications

Problem 1.1. Consider a random variable X with PMF

fX(1) = 0.3 fX(2) = 0.25 fX(3) = 0.2 fX(4) = 0.15 fX(5) = 0.1

What is E[X]?

Solution 1.1. By definition,

E[X] = 1 · 0.3 + 2 · 0.25 + 3 · 0.2 + 4 · 0.15 + 5 · 0.1 = 2.5

Problem 1.2. A lottery is conducted in which 7 numbers are drawn without replacement between
the numbers 1 and 49. A player wins the lottery if the numbers selected on their ticket match all 7 of
the drawn numbers. A ticket to play the lottery costs 10 cents, and the jackpot is valued at $1,000,000.
Is the expected return* of this bet positive, i.e., would you play this bet?

Note: The return of a bet is the winnings minus costs.

Solution 1.2. Let R denote the return of the game. The random variable R can take two values,
depending on if we win or not:

R =

−0.10 with probability 1− 1

(49
7 )

999, 999.90 with probability 1

(49
7 )

The expected value of R, or the expected return, is then

E[R] = −0.10 ·

(
1− 1(

49
7

))+ 999, 999.90 · 1(
49
7

) ≈ −0.0884

Problem 1.3. Suppose X is a random variable satisfying a ≤ X(ω) ≤ b for all ω ∈ S. Show that
a ≤ E[X] ≤ b.

Solution 1.3. Since a ≤ X(ω) ≤ b, we have X(S) ⊆ [a, b]. There

E[X] =
∑

x∈X(S)

xfX(x) ≤
∑

x∈X(S)

bfX(x) = b
∑

x∈X(S)

fX(x) = b

and
E[X] =

∑
x∈X(S)

xfX(x) ≥
∑

x∈X(S)

afX(x) = a
∑

x∈X(S)

fX(x) = a.

Problem 1.4. Let X be the outcome of one die roll with a fair six-sided die.

1. What is the expected value of X?

2. What is the expected value of the square of X?
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Solution 1.4.

1. Since X ∼ U [1, 6] we have

E[X] =
1 + 6

2
= 3.5.

Alternative Solution: We can compute this directly

E[X] =
1

6

6∑
x=1

x = 3.5.

2. The square does not follow any known density, so we compute it directly,

E[X2] =
1

6
(12 + 22 + · · ·+ 62) =

91

6
.

Problem 1.5. Suppose the discrete random variable X has PMF

fX(−1) = 0.15, fX(0) = 2c, fX(1) = 0.5, fX(2) = 0.05, fX(3) = c.

where c is a constant making f a valid PMF.

1. What is E[X]?

2. What is E[eX ]?

Solution 1.5. Since the probabilities sum to 1, we must have

1 =

3∑
x=−1

fX(i) = 3c+ 0.7 =⇒ c = 0.1

1. By definition,

E[X] = (−1) · 0.15 + 0 · 0.2 + 1 · 0.5 + 2 · 0.05 + 3 · 0.1 = 0.75

2. By the law of the unconscious statistician

E[eX ] = e−1 · 0.15 + e0 · 0.2 + e1 · 0.5 + e2 · 0.05 + e3 · 0.1 ≈ 3.992

Problem 1.6. Suppose two fair six sided die are independently rolled 24 times, and let X denote the
number of times the sum of die rolls is 7. What is E[X]?

Solution 1.6. The ways of rolling a 7 out of two die rolls is {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} so
the probability is 6

62 = 1
6 . This is the probability of a success and there are 24 trials, X ∼ Bin(24, 16 )

so

E[X] =
24

6
= 4.

Problem 1.7. You are invited to a quiz show! There are two categories of questions, History and
Geography. The host lets you pick which category to pick first. If you get your first question right, you
are then given the opportunity to answer the second question, otherwise the game is over. Because
history is so much harder, the history question is worth $200 while the Geography question is only
worth $100. Checking back on your high school transcript you estimate that you get a geography
question right with probability 70% while you get a history question right with probability 55%. You
can assume that knowing the answers to the two questions is independent.

Page 4 of 10



March 29, 2024 STAT230 – Week 6 Justin Ko

1. Which category should you pick first in order to maximize your expected winnings?

2. Suppose you are indecisive and flip a fair coin before picking the category you answer first. If the
coin shows heads, you pick the history question first, otherwise the geography question. Compute
the the expected value of your winnings.

Solution 1.7.

1. Let Wh and Wg be the winnings if we pick history first and geography first respectively. If we
first pick history, the expected winnings are

E[Wh] = (200 + 100) · 0.55 · 0.7 + (200 + 0) · 0.55 · 0.3 = 148.5

If we first pick geography, the expected winnings are

E[Wg] = (100 + 200) · 0.7 · 0.55 + (100 + 0) · 0.7 · 0.45 = 147

Since E[Wh] > E[Wg], we should pick history first to maximize the expected winnings.

2. Let W be the winnings if a coin decides our decision. Consider the random variables

1H =

{
1 we flip a H

0 we flip a T
and 1T =

{
1 we flip a T

0 we flip a H
.

We have W = 1HWh + 1TWg, so the linearity of expectation and independence implies that implies
that

E[W ] = E[1HWh + 1TWg] = E[1HWh] + E[1TWg] = E[1H ]E[Wh] + E[1T ]E[Wg].

It is easy to see that E[1(H)] = E[1T ] = 1
2 so the results in part (1) implies

E[W ] = E[1HWh] + E[1TWg] =
1

2
(E[Wh] + E[Wg]) = 147.75.

Remark 4. We used the fact that if X and Y are independent that E[XY ] = E[X]E[Y ], but we
will go more into that in later chapters. In this example, it is not hard to compute the expectation
explicitly without using this fact. Since 1HWh = 0 if we flip a tails, independence implies that

E[1HWh] =
∑

x∈Wh(S)

0P(Wh = x, T ) +
∑

x∈Wh(S)

xP(Wh = x,H)

=
∑

x∈Wh(S)

xP(Wh = x)P(H) =
1

2

∑
x∈Wh(S)

xP(Wh = x) =
1

2
E[Wh].

The exact same argument implies that E[1TWh] = 1
2 E[Wg].

Alternate Solution: We can list out all the cases. Let W denote the winnings.

1. Heads, first wrong. We first pick history and get it wrong. We win W = 0 with probability
0.5 · 0.45 = 0.225

2. Heads, second wrong. We first pick history, get it right, then geography wrong so we win W = 200
with probability 0.5 · 0.55 · 0.3 = 0.0825.

3. Heads, no questions wrong. We win W = 300 with probability 0.5 · 0.55 · 0.7 = 0.1925.
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4. Tails, first wrong. We first pick geography and get it wrong. We win W = 0 with probability
0.5 · 0.3 = 0.15.

5. Tails, second wrong. We first pick geography, get it right, then history wrong so we win W = 100
with probability 0.5 · 0.7 · 0.45 = 0.1575.

6. Tails, no questions wrong. We win W = 300 with probability 0.5 · 0.7 · 0.55 = 0.1925.

The PMF of the winnings W is given by

fW (0) = 0.225 + 0.15, fW (100) = 0.1575 , fW (200) = 0.0825, fW (300) = 0.1925 + 0.1925.

and we find

E[W ] = 100 · 0.1575 + 200 · 0.0825 + 300 · (0.1925 + 0.1925) = 147.75.

Problem 1.8. Suppose that calls to the Canadian Tire Financial call center follow a Poisson process
with rate 30 calls per minute. Let X denote the number of calls to the center after 1 hour. What is
E[X/2− 1]?

Solution 1.8. The rate of 30 calls per minute is equivalent to a rate of 30 · 60 calls per hour, so
X ∼ Poi(30 · 60). Therefore,

E
[X

2
− 1
]

=
1

2
E[X]− 1 =

1800

2
− 1 = 899.

Problem 1.9. Consider a random variable X with PMF fX(x) = 1
x for x = 2, 4, 8, 16, . . . and 0

otherwise.

1. Show that
∑
all x

fX(x) = 1.

2. What is E[X]?

Solution 1.9.

1. The range of X is 2n where n ≥ 1. We have by the geometric series that∑
all x

fX(x) =
∑
n≥1

1

2n
=
∑
n≥0

1

2n
− 1 =

1

1− 1
2

− 1 = 1.

2. For the expected value, we have

E[X] =
∑
n≥1

2nfX(2n) =

∞∑
n=1

2n
(

1

2n

)
=

∞∑
n=1

1 =∞,

so the expected value is infinite, and does not exist in the traditional sense.

Problem 1.10. (∗) Suppose that n male-female couples are at a party and that the males and females
are randomly paired for a dance. A match occurs if a couple happens to be paired together. What is
the expected number of matches?
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Solution 1.10. This famous problem is called the matching problem. The expected value is easily
computed using the linearity of expectation. We label the males 1, . . . , n and let Ai be the event that
the male is matched with his wife. We define

1Ai
=

{
1 if Ai happens

0 if Ai does not happen
=

{
1 male i is matched with his wife

0 male i is not matched with his wife.

If X denotes the number of matches, then X = 1(A1) + · · ·+ 1(An). Therefore,

E[X] = E[1A1
+ · · ·+ 1An

] = E[1A1
] + · · ·+ E[1An

].

By symmetry, we see that E[1A1
] = E[1A2

] = · · · = E[1An
] and

E[1A1 ] = 1 · P(A1) + 0 · P(Acn) = P(A1) =
1

n

since the probability that the first male is matched with any of the n women is equally likely, and only
1 is his wife. Therefore,

E[X] = E[1A1
+ · · ·+ 1An

] = E[1A1
] + · · ·+ E[1An

] = nP(A1) = 1.

Remark 5. Notice that the events A1, . . . An are clearly not independent. For example, if A1, . . . , An−1
were to happen then An must be true too since the only men and women left are husband and wife.
The linearity of expectation allowed us to decompose the random variable into a sum of possibly
dependent events. However, by symmetry we only needed to compute the probability of a single event
A1 in isolation without worrying about the other events A2, . . . , An.

1.3.2 Derivations and Proofs

Problem 1.11. Prove the law of the unconscious statistician

Solution 1.11. This follows from a change of variables and a rearrangement of a sum. Given a
function g, let

Dy = g−1({y}) = {x : g(x) = y}.

If we let Y = g(X) then

fY (y) = P(g(X) = y) =
∑
x∈Dy

fX(x).

and Y (S) = g(X(S)) since

Y (S) = {Y (ω) : ω ∈ S} = {g(X(ω)) : ω ∈ S}.

Therefore,

E[g(X)] = E[Y ] =
∑

y∈Y (S)

yfY (y) =
∑

y∈Y (S)

y
∑
x∈Dy

fX(x) =
∑

y∈Y (S)

∑
x∈Dy

g(x)fX(x) =
∑

x∈X(S)

g(x)fX(x).

Since (Dy)y∈Y (S) forms a partition of X(S).

Problem 1.12. Prove the linearity property of expectation
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Solution 1.12. This follows form the linearity of summation. By the law of the unconscious statis-
tician with g(x) = ax+ b, we have

E[aX + b] =
∑

x∈X(S)

(ax+ b)fX(x) = a
∑

x∈X(S)

xfX(x) + b
∑

x∈X(S)

fX(x) = aE[X] + b

since
∑
x∈X(S) fX(x) = 1.

Problem 1.13. If X ∼ U[a, b] then E[X] = a+b
2 .

Solution 1.13. If X ∼ U[a, b] then the sum of positive integers implies

E[X] =

b∑
x=a

x

b− a+ 1
=

1

b− a+ 1

( b∑
x=1

x−
a−1∑
x=1

x

)
=

1

b− a+ 1

(
b(b+ 1)

2
− a(a− 1)

2

)
=

1

b− a+ 1

(
b2 − a2 + (b+ a)

2

)
=
a+ b

2
.

Alternative Solution: If X ∼ U[0, n] then the sum of positive integers implies

E[X] =

n∑
x=0

x

n+ 1
=
n(n+ 1)

2(n+ 1)
=
n

2
.

Notice that X ∼ U[a, b] ∼ a + U[0, b − a]. Therefore, if we let Y ∼ U[0, b − a], then X = a + Y so
linearity implies that

E[X] = E[a+ Y ] = a+ E[Y ] = a+
b− a

2
=
a+ b

2
.

Problem 1.14. (∗) If X ∼ Hyp(N, r, n), then E[X] = r nN .

Solution 1.14. This proof uses a trick called the linearity of expectation. To simplify notation,
suppose that we have r blue balls and N − r red balls, then X ∼ Hyp(N, r, n) denotes the number of
blue balls we drew from a sample of n balls without replacement.

We label the blue balls 1, . . . , r and let Ai denote the event that the blue ball labeled i was drawn.
Consider the random variable

1Ai
=

{
1 if we drew the blue ball labeled i

0 if we did not draw the blue ball labeled i.

If X ∼ Hyp(N, r, n) then X =
∑r
i=1 1(Ai) which is the total number of blue balls that we drew. We

have by the linearity of expectation that

E[X] = E
[ r∑
i=1

1Ai

]
=

r∑
i=1

E[1Ai
].

Next, for any i, we have

E[1Ai
] = 1 · P(A1) + 0 · (1− P(A1)) = P(we drew the blue ball labeled i).

By symmetry (we are not more likely to draw a particular ball over another one), for all i ≤ r

P(Ai) = P(A1) = P(we drew the blue ball labeled 1) =

(
1
1

)(
N−1
n−1

)(
N
n

) =
n

N

so

E[X] =

r∑
i=1

E[1Ai
] = r P(A1) =

rn

N
.
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Problem 1.15. If X ∼ Bin(n, p) then E[X] = np.

Solution 1.15. If X ∼ Bin(n, p) then fX(x) =
(
n
x

)
px(1− p)n−x so

E[X] =

n∑
x=0

x ·
(
n

x

)
px(1− p)n−x

=

n∑
x=1

x · n!

(n− x)!x!
· px(1− p)n−x

=

n∑
x=1

n · (n− 1)!

((n− 1)− (x− 1))!(x− 1)!
p · px−1(1− p)n−1−(x−1) add and subtract 1

= np

n−1∑
y=0

(n− 1)!

((n− 1)− y)!y!
· py(1− p)(n−1)−y re-index sum

= np

n−1∑
y=0

(
n− 1

y

)
· py(1− p)(n−1)−y︸ ︷︷ ︸

=1sum of PMF of Bin(n− 1, p)

= np.

Alternative Solution: If X ∼ Bern(p) then

E[X] = 1 · p+ 0 · (1− p) = p.

Now suppose that X ∼ Bin(n, p). Since X = X1+· · ·+Xn where Xi are independent and X ∼ Bern(p)
(the number of successes in n trials is equal to the sum of n successful trials), linearity implies that

E[X] = E[X1 + . . . Xn] = nE[X1] = np.

Problem 1.16. (∗) If X ∼ NegBin(k, p), show that E[X] = k(1−p)
p .

Solution 1.16. We first consider the geometric random variable. We will use many times throughout
this derivation the identity

∞∑
k=0

qk =
1

1− q
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for |q| < 1. If X ∼ Geo(p) ∼ NegBin(1, p) then fX(x) = p(1− p)x so

E[X] =

∞∑
x=0

xp(1− p)x = p

∞∑
x=1

x∑
k=1

(1− p)x 0 · ep(1− p)0 = 0,

x∑
k=1

= x

= p

∞∑
k=1

∞∑
x=k

(1− p)x 1 ≤ k ≤ x <∞

= p

∞∑
k=1

(1− p)k
∞∑
x=0

(1− p)x
∞∑
x=k

(1− p)x = (1− p)k
∞∑
x=0

(1− p)x

= p

∞∑
k=1

(1− p)k

1− (1− p)

∞∑
x=0

(1− p)x =
1

1− (1− p)

= (1− p)
∞∑
k=0

(1− p)k
∞∑
x=1

(1− p)x = (1− p)
∞∑
x=0

(1− p)x

=
1− p
p

.
∞∑
x=0

(1− p)x =
1

1− (1− p)

Now suppose that X ∼ NegBin(k, p). For 1 ≤ i ≤ k, let Xi denote the number of fails between the
(i − 1)st success and the ith success. Since Xi counts the number of fails until the next success, we
have Xi ∼ Geo(p) for all i. By definition, X = X1 + · · ·+Xk since the total fails until k successes is
equal to the sum of the number fails between successes, linearity implies that

E[X] = E[X1 + . . . Xk] = kE[X1] =
k(1− p)

p
.

Problem 1.17. If X ∼ Poi(µ), show that E[X] = µ.

Solution 1.17. If X ∼ Pois(µ) then fX(x) = e−µ µ
x

x! so

E[X] =

∞∑
x=0

x · e−µµ
x

x!

=

∞∑
x=1

x · e−µµ
x

x!
0 · e−µµ

0

0!
= 0

= µ

∞∑
x=1

e−µ
µx−1

(x− 1)!

= µ

∞∑
y=0

e−µ
µy

y!︸ ︷︷ ︸
=1 sum of PMF of Poi(µ)

re-index sum

= µ.
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