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1 Discrete Random Variables Part I

1.1 Random Variables

We define the concept of a random variable which will allow us to describe probabilities without having
to go through the trouble specifying the sample spaces, which is often tedious to work with in practice.

Definition 1. A random variable is a function that maps the sample space S to the set of real numbers
R. That is, X is a random variable if

X : S → R.
Definition 2. The values in R that a random variable takes is called the range of the random variable,
and is denoted by

X(S) = {X(ω) ∈ R : ω ∈ S}.
Definition 3. The values in the sample space that are mapped to a set A by the random variable X
is called the pre-image of A under X, and is denoted by

X−1(A) = {ω ∈ S : X(ω) ∈ A}.

Definition 4. There are two “informal” classifications of random variables we consider in this course.

� We say that a random variable is discrete if its range is a discrete subset of R (i.e., a finite or a
countably infinite set).

� A random variable is continuous if its range is an interval that is a subset of R (e.g. [0, 1], (0,∞),R).

There are random variables that are neither discrete or continuous, such as mixed random variables.

Remark 1. A random variable may be discrete even though the underlying sample space might not
be (see Problem 1.14).

Definition 5. Random variables X and Y are independent if for any events A,B,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

1.1.1 Probability Mass Function (PMF)

Random variables induce a probability on its range X(S) ⊆ R. This is very convenient because we no
longer have to consider probabilities on sets, but rather probabilities on the real line.

Definition 6. The probability (mass) function of a discrete random variable X is the function

fX(x) = P(X = x) := P({ω ∈ S : X(ω) = x}) = P(X−1(x)) = (P ◦X−1)(x).

The value of fX(x) is zero when x is outside the range of the random variable X, so we usually only
specify fX on X(S). The values of x such that fX(x) is nonzero is called the support of X.

If (S,P) is our original probability model on the underlying sample space, the PMF induces a
probability on the range X(S) through the (push-forward) measure fX(x) = P(X−1(x)). It follows
that the PMF defines a (discrete) probability distribution defined on X(S) ⊆ R instead of S:

1.
0 ≤ fX(x) ≤ 1 for all x

2. ∑
x∈X(S)

fX(x) = 1.

An important implication of this fact is that we no longer have to specify what the underlying sample
space S with probability measure P to compute probabilities. If X encodes the quantities we need to
assign probabilities to, then we can work directly with the sample space X(S) and its distribution fX .
The upside from this point of view is that studying probability has now been connected to studying
functions, and we have many mathematical tools to do this, e.g. linear algebra, calculus, etc.
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1.1.2 Cumulative Distribution Function (CDF)

We are often interested in probabilities of the form P(X ≤ x) or P(X > x). We will see that these
probabilities encodes the same information as a PMF.

Definition 7. The cumulative distribution function (CDF) of a random variable X is

FX(x) = P(X ≤ x) := P({ω ∈ S : X(ω) ≤ x}), x ∈ R.

The CDF is not a probability measure, but instead satisfies 4 characterizing properties

1. 0 ≤ FX(x) ≤ 1

2. FX(x) ≤ FX(y) for x < y

3. lim
x→−∞

FX(x) = 0, and lim
x→∞

FX(x) = 1

4. FX is right continuous, i.e., FX(x) = FX(x+) = limt↓x FX(t) for all x ∈ R
In fact, any function that satisfies these properties defines a CDF, so we can find the random variable
associated with this function. As a consequence, if two random variables have the same CDF, they
encode the same probability measure on X(S).

Definition 8. Two random variables X and Y are equal in distribution if FX(t) = FY (t) for all t ∈ R.
We denote this by

X ∼ Y

Remark 2. Random variables X and Y being equal in distribution does not mean X = Y (see
Problem 1.13). It just means that the probability of X and Y taking any particular value is the same.
In fact, X and Y don’t even have to be functions defined on the same sample space.

1.1.3 Connection Between the PMF and CDF

The PMF and CDF encode the same information for discrete random variables.

1. If X is discrete with PMF fX , then

FX(x) =
∑
y≤x

fX(y).

Notice that FX(x) is constant between consecutive points in the support of fX .

2. If X is discrete with CDF FX , then

fX(x) = FX(x)− FX(x−) =: FX(x)− lim
t↑x

FX(t).

Notice that fX(x) is zero except for points of discontinuity of FX .

Example 1. The PMF and CDF of a random variable is visualized below:

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x

P
M

F

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x

C
D

F

The discontinuous jumps of the CDF are exactly the same size as the non-zero values of the PMF.
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1.2 Important Discrete Distributions (Part I)

1.2.1 (Discrete) Uniform Distribution: U[a, b]

The (discrete) uniform distribution models variables with equally likely outcomes on an interval.

Definition 9. Suppose the range of the random variable X is {a, a + 1, . . . , b}, where a, b ∈ Z, and
suppose all values are equally likely. Then we say that X has a discrete uniform distribution on
{a, a + 1, . . . , b}, and is denoted by

X ∼ U[a, b].

� PMF:

fX(x) =
1

b− a + 1
, for x ∈ {a, a + 1, . . . , b}.

� CDF:

FX(x) =


0, if x < a
bxc−a+1
b−a+1 , if x ∈ {a, a + 1, . . . , b},

1, if x ≥ b,

where bxc = max{z ∈ Z : z ≤ x} is the rounding-down function (“floor”).

Example 2. The following experiments can be modeled by a uniform distribution:

Experiment X Distribution
Roll a 6 sided die # showing on die U [1, 6]
Draw a number between 1 and 50 # Drawn U [1, 50]
Shuffle a deck of cards position of A♠ U [1, 52]

1.2.2 Hypergeometric Distribution: Hyp(N, r, n)

The hypergeometric distribution counts the number of successes in a sample without replacement.

Definition 10. Consider a population that consists of N objects that can be divided into a group of
r indistinguishable “successes” and a group of N − r indistinguishable “failures”. If X is the number
of successes in a random subset of size n drawn from the population without replacement, then we
say X follows a hypergeometric distribution with parameters (N, r, n), and is denoted by

X ∼ Hyp(N, r, n).

� PMF:

fX(x) =

(
r
x

)(
N−r
n−x

)(
N
n

) for max{0, n− (N − r)} ≤ x ≤ min{r, n}

� CDF: There is no closed form in terms of elementary functions.

Example 3. The following experiments can be modeled by a hypergeometric distribution

Experiment X Distribution
Drawing 5 cards from a deck of cards # of Ace’s Hyp(52, 4, 5)
Lotto where 7 numbers are drawn from 50 # Matches Hyp(50, 7, 7)
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1.2.3 Bernoulli Distribution: Bern(p)

The Bernoulli distribution models experiments with two possible outcomes.

Definition 11. Suppose an experiment (called a Bernoulli trial) has a probability of success p. If
X denotes the number of successes in a single Bernoilli trial, then we say X follows the Bernoulli
distribution, and is denoted by

X ∼ Bern(p).

� PMF:
fX(0) = 1− p, fX(1) = p

� CDF:

FX(x) =


0, if x < 0,

1− p, if 0 ≤ x < 1,

1, if x ≥ 1

Example 4. The following experiments can be modeled by a Bernoulli distribution

Experiment X Distribution
Roll a 6 sided die # of 1’s Bern(1

6 )

Lotto where 7 numbers are drawn from 50 # Jackpots Bern(
(
50
7

)−1
)

1.2.4 Binomial Distribution: Bin(n, p)

The binomial distribution counts how many trials are successful after multiple independent experi-
ments. Equivalently, it also models the number of successes in samples with replacement.

Definition 12. Suppose a Bernoulli trial has a probability of success p. If X is the number of successes
in n independent Bernoilli trials, then we say X follows the Binomial distribution, and is denoted by

X ∼ Bin(n, p).

� PMF:

fX(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n

� CDF: There is no closed form in terms of elementary functions.

Example 5. The following experiments can be modeled by a Binomial distribution

Experiment X Distribution
Roll a 10 6 sided die # of 1’s Bin(10, 1

6 )

Buy 1 tickets from a Lotto where 7 numbers are drawn from 50 # Jackpots Bin(1,
(
50
77

)−1
)

Generate each digit of a 5 digit number randomly from 1 to 9 # odd digits Bin(5, 5
9 )

Relationship with the Hypergeometric Distribution: Intuitively, when the population is large
then sampling with or without replacement should not make much of a difference provided that the
sample size is small with respect to the population size. The Binomial distribution arises as a limit of
Hypergeometric distribution when the number of successes r is a fixed proportion of the population
size,

r

N
= p and N →∞

Theorem 1 (Binomial Approximation of the Hypergeometric Distribution)

Let p ∈ (0, 1) and let X ∼ Hyp(N, pN, n) and Y ∼ Bin(n, p). Then for all k ∈ R,

lim
N→∞

P(X ≤ k) = P(Y ≤ k).
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1.3 Example Problems

1.3.1 PMF and CDF Problems

Problem 1.1. Consider again the following game: You roll a fair die and win 2$ if the die shows a
number between 1 and 4 (inclusive), and otherwise you loose 5$. If X denote sthe gain, what is fX .

Solution 1.1. The underlying sample space is [6], and the underlying probability is uniform on this
sample space. Clearly X takes values in {−5, 2}. We have

fX(2) = P(X = 2) = P(X−1(2)) = P(ω ∈ {1, 2, 3, 4}) =
2

3

fX(−5) = P(X = −5) = P(X−1(−5)) = P(ω ∈ {5, 6}) =
1

3

and fX(x) = 0 otherwise.

Problem 1.2. Suppose you roll two fair six-sided dice and denote by X the sum. Which x maximizes
the PMF fX(x)?

Solution 1.2. We tabulate the PMF fX of X, which represents the sum of the two dice:

x 2 3 4 5 6 7 8 9 10 11 12
fX(x) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

We see that x = 7 maximizes the PMF fX .

Problem 1.3. Consider rolling two fair six sided die, and let the random variable X be the minimum
of the die rolls. What is fX(2)?

Solution 1.3. We want to compute fX(2) = P(X = 2). This happens when we roll

(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 2), (4, 2), (5, 2), (6, 2)

There are 9 possibilities, so fX(2) = 9
36 = 1

4 .

Problem 1.4. Find the value k which makes the function f given by

f(0) = 0.1, f(1) = k, f(2) = 3k, f(3) = 0.3

and 0 elsewhere a valid probability function.

Solution 1.4. A PMF function has to be non-negative and sum to 1. We find k such that

f(0) + f(1) + f(2) + f(3) = 1 =⇒ 4k + 0.4 = 1 =⇒ k = 0.15.

Furthermore, one can check that this choice of k ensures that all f(i) ∈ [0, 1].

Problem 1.5. Suppose students A,B and C each independently answer a question on a test. The
probability of getting the correct answer is 0.9 for A, 0.7 for B and 0.4 for C. Let X denote the number
of people who get the answer correct.
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1. Compute the PMF of X.

2. Draw the CDF of X.

Solution 1.5. Denote by A,B,C the events that students A,B,C get the answer correct, then P(A) =
0.9, P(B) = 0.7 and P(C) = 0.4 and we also know P(Ac) = 0.1, P(Bc) = 0.3 and P(Cc) = 0.6.

We find can explicitly compute all cases

fX(0) = P(X = 0) = P(Ac ∩Bc ∩ Cc)
indep.
= P(Ac)P(Bc)P(Cc) =

18

1000

fX(3) = P(X = 3) = P(A ∩B ∩ C)
indep.
= P(A)P(B)P(C) =

252

1000

fX(1) = P(X = 1) = P(A ∩Bc ∩ Cc) + P(Ac ∩B ∩ Cc) + P(Ac ∩Bc ∩ C)

=
9 · 3 · 6
1000

+
7 · 1 · 6
1000

+
4 · 1 · 3
1000

=
216

1000

and, since the PMF sums to 1,

fX(2) = 1− fX(0)− fX(1)− fX(3) =
514

1000
.

The CDF is thus

FX(x) = P(X ≤ x) =



0, if x < 0

fX(0), if 0 ≤ x < 1

fX(0) + fX(1), if 1 ≤ x < 2

fX(0) + fX(1) + fX(2), if 2 ≤ x < 3

fX(0) + fX(1) + fX(2) + fX(3), if x ≥ 3

=



0, if x < 0
18

1000 , if 0 ≤ x < 1
234
1000 , if 1 ≤ x < 2
748
1000 , if 2 ≤ x < 3

1, if 3 ≤ x

The plot of the CDF is below:
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Remark 3. The end points of the intervals in the CDF are the same as the non-zero values of the
PMF. Furthermore, the ≤ inequality is always on the left of the x and the < inequality is always to
the right of the x. This implies the CDF is right continuous. Furthermore, the value of the CDF on
each interval is equal to the value of the CDF at the left endpoint (which is true even for the first
interval since FX(−∞) = 0).
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Problem 1.6. Consider flipping a fair coin. Let X = 1 if the coin is heads, and X = 3 if the coin is
tails. Let Y = X2 + X. What is the probability function of X?

Solution 1.6. The underlying sample space is S = {H,T}. Y takes values in {3, 12}, so fY is
supported on {3, 12}. Notice that Y −1(12) = X−1(3) = {T} and Y −1(3) = X−1(1) = {H}

fY (y) = P(Y = y) =

{
1
2 if y = 3
1
2 if y = 12

Problem 1.7. Suppose that a bowl contains 10 balls, each uniquely numbered 0 through 9. Two
balls are drawn with replacement and let X1 be the number of the first ball and X2 be the number of
the second ball. Find the PMF of X = X1 + 10X2.

Solution 1.7. We have X1 and X2 are independent and X1 ∼ X2. X1 is uniformly distributed over
the set S = {0, 1, . . . 9} and so is X2. We have

P(X = 0) = P(X1 = 0)P(X2 = 0) = 0.12 = 0.01

P(X = 1) = P(X1 = 1)P(X2 = 0) = 0.12 = 0.01

...

P(X = 98) = P(X1 = 8)P(X2 = 9) = 0.12 = 0.01

P(X = 99) = P(X1 = 9)P(X2 = 9) = 0.12 = 0.01

We have that X is uniformly distributed on the set of {0, 1, . . . , 99} .

Problem 1.8. Consider drawing a 5 card hand at random from a standard 52 card deck. What is
the probability that the hand contains at least 3 Kings?

Solution 1.8. This is modeled using a hypergeometric distribution. We have N = 52 cards, out of
which r = 4 are kings (“successes”), and we are sampling n = 5 cards without replacement from the
deck. The random number of kings, X, then satisfies X ∼ Hyp(N = 52, r = 4, n = 5). Thus, using
the PMF from earlier, we find

P (X ≥ 3) = P (X = 3) + P (X = 4) =

(
4
3

)(
48
2

)(
52
5

) +

(
4
4

)(
48
1

)(
52
5

) ≈ 0.00175

Problem 1.9. Suppose a tack when flipped has probability 0.6 of landing point up. If the tack is
flipped 10 times, what is the probability it lands point up more than twice?

Solution 1.9. This is modeled using a binomial distribution. Let X denote the number of times the
tack lands point up. Then X ∼ Bin(10, 0.6) and

P(X > 2) = 1− P(X ≤ 2)

= 1− [P(X = 0) + P(X = 1) + P(X = 2)]

= 1−
[(

10

0

)
0.600.410 +

(
10

1

)
0.610.49 +

(
10

2

)
0.620.48

]
≈ 0.9877
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Problem 1.10. There are 5 stops on a bus line and 10 passengers on the bus. At every stop, there
is a machine that records how many passengers got off at that stop. Assume the passengers are each
equally likely to get off at any stop. Let X denote the number of passengers recorded by the machine
at the first stop. Find the PMF of X.

Solution 1.10. By our assumptions, each passenger chooses a bus stop independently, and there is a
1
5 chance of the passenger getting off at the first stop. We can model this with a binomial distribution,
which counts a success if the passenger gets off at the first stop. Therefore, X ∼ B(10, 0.2), so

fX(x) =

(
10

x

)
0.2x0.810−x,

for x ∈ {0, 1, . . . , 10}.

Alternative Solution: By the assumptions, the sample space S = [5]10 (which denotes where each
passenger got off) has equally likely outcomes. To find fX(x) = P(X = x), we want to count all the
possible events A such that A has exactly x 1’s appearing. There are

(
10
x

)
410−x possibilities since there

are
(
10
x

)
ways to choose which passengers got off at stop 1 (the number of cases), and 410−x possible

choices for the remaining passengers (the number of possibilities in each case). Since the probability
is uniform on S,

fX(x) =

(
10
x

)
410−x

510
=

(
10

x

)
1

5x
410−x

510−x
=

(
10

x

)
0.2x0.810−x.

Remark 4. Clearly, fX is not uniform, so the number of passengers that got off at the first stop is
not uniform over the range X(S) = {0, 1, 2, . . . , 10}. This means that a sample space that encodes the
number of people that got off at a particular stop does not have equally likely outcomes.

Problem 1.11. You have n identical looking keys on a chain, and one opens your office door. Suppose
you try the keys in random order. Let X denote the number of keys you try until the door opens.
Find the PMF of X.

Solution 1.11. Since we are trying keys randomly without replacement, the location of the correct
key is uniform over the set {1, . . . , n} by symmetry. We can model this with a uniform distribution,
so X ∼ U[1, n]. Therefore,

fX(x) =
1

n

for x ∈ {, 1, . . . , n}.

Alternative Solution: By our assumptions, the sample space is the permutations of the set [n],
which denotes the order of keys we try. Without loss of generality, we may assume that the key la-
beled 1 is the right key. To find fX(x) = P(X = x), we want to count all the possible events A such
that 1 appears in the xth position. There are (n−1)! ways that this can happen, since there are (n−1)
positions left to assign without replacement after fixing the correct key in the xth position. Since the
probability is uniform on S,

fX(x) =
(n− 1)!

n!
=

1

n
.
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Problem 1.12. Suppose you have a bag with 100 beads, 15 of which are red and the remaining
ones are blue. You take 5 beads out of the bag without replacement. Suppose we want to compute
the probability that 2 of the 5 sampled beads are red. The best model is the hypergeometric. Call
the resulting probability phyper. We approximate this probability by using an appropriate Binomial
distribution. Denote the probability (under the binomial model) that we have 2 red beads by pbinomial.
Compute phyper and pbinomial.

Solution 1.12. Under the true model X ∼ Hyp(N = 100, r = 15, n = 5), so

phyper = P(X = 2) =

(
15
2

)(
100−15
5−2

)(
100
5

) ≈ 0.13775

Let p = r/N = 0.15. If we assumed a binomial distribution Y ∼ Bin(5, 0.15), we’d get

pbinomial = P(Y = 2) =

(
5

2

)
0.1520.853 = 0.13818

which is quite close to the true probability.

1.3.2 Derivation of Distributions

Problem 1.13. (∗) Find an example of random variables such that X ∼ Y , but X 6= Y .

Solution 1.13. We define X = Bern(0.5) and Y = 1−X. Clearly, X 6= Y since X = 1 =⇒ Y = 0
and X = 0 =⇒ Y = 1. However,

fY (1) = P(Y = 1) = P(1−X = 1) = P(X = 0) =
1

2

and

fY (0) = P(Y = 0) = P(1−X = 0) = P(X = 1) =
1

2
,

so Y has the same PMF as a Bern(0.5) random variable, and in FX and FY are identical since the
CDF is in direct correspondence with the PMF.

Remark 5. This is example is equivalent to the following. You flip a single coin. Let X denote the
number of heads, and let Y denote the number of tails. It is clear that X 6= Y , but X ∼ Y since,

P(T ) = P(Y = 1) = P(X = 1) = P(H) =
1

2

and

P(H) = P(Y = 0) = P(X = 0) = P(T ) =
1

2
.

Problem 1.14. Find an example of random variables that is discrete while its underlying sample
space is not.

Solution 1.14. A random variable may be discrete even though the underlying sample space might
not be. For example, if S = [0, 1], the random variable

X(ω) = 1(ω ≤ 0.5) =

{
1, if ω ≤ 0.5

0, otherwise
.
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Problem 1.15. (∗) Derive the PMF for the hypergeometric function.

Solution 1.15. Recall that N denotes the size of the population, and there are r successes and N − r
failures. We consider samples of size n from the population without replacement, and let X denote
the number of successes in the draw. We first find the support of fX .

� We cannot have more successes x than the total successes r ⇒ x ≤ r.

� We cannot have more successes x than the total trials n ⇒ x ≤ n.

� We cannot have less than 0 successes ⇒ x ≥ 0.

� When there are more trials than failures n > (N − r) we will for sure have at least n− (N − r)
successes ⇒ x ≥ n− (N − r).

� Altogether, max{0, n− (N − r)} ≤ x ≤ min{r, n}.

We now find the fX(x) for max{0, n − (N − r)} ≤ x ≤ min{r, n}. There are
(
N
n

)
ways to draw n

items from a population of size N without replacement, which is our sample space. We now count the
number of ways to get exactly x successes in this sample. There are

(
r
x

)
ways to pick x successes out of

the possible r successes, and there are
(
N−r
n−x

)
ways to pick the remaining failures, and so the product

encodes the total number of ways to get exactly x successes in this sample. Since the probability is
uniform on the sample space of draws,

fX(x) = P(X = x) =

(
r
x

)(
N−r
n−x

)(
N
n

) .

Problem 1.16. (∗) Let X1, . . . , Xn are independent Bern(p) random variables. Show that the sum
Sn = X1 + · · ·+ Xn has a Bin(n, p) distribution. In other words, show that Sn ∼ Bin(n, p).

Solution 1.16. We see that Sn can take values in {0, 1, . . . , n} since they are the sum of random
variables that takes values in {0, 1}. We want to find fX(k). Let (x1, . . . , xn) ∈ {0, 1}n be such that∑

i xi = k, which is equivalent to saying that exactly k coordinates are 1. We have

P((X1, . . . , Xk) = (x1, . . . , xn)) = P(X1 = x1) . . .P(Xn = xn) = pk(1− p)1−k

by independence. There are
(
n
k

)
ways to choose the coordinates of (x1, . . . , xn) such that exactly k are

1 , so by symmetry.

fX(k) = P(Sn = k) =
∑

(x1,...,xn)∑
xi=k

P((X1, . . . , Xk) = (x1, . . . , xn)) =

(
n

k

)
pk(1− p)1−k.

Remark 6. We can think of the Xi as denoting whether the ith independent draw was a success. The
total number of successes in n draws with replacement was a success (since we need the probability of
success to be the same for all Xi) is encoded by Sn, which has Binomial distribution.

Problem 1.17. (∗) Let p ∈ (0, 1) and let X ∼ Hyp(N, pN, n) and Y ∼ Bin(n, p). Show that for all
x ∈ R,

lim
N→∞

P(X ≤ x) = P(Y ≤ x).
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Solution 1.17. Recall that for fX is supported on integers such that

max{0, n− (N −Np)} ≤ x ≤ min{Np, n}

which is equal to 0 ≤ x ≤ n for N sufficiently large since p ∈ (0, 1). Therefore, both PMF functions
are discrete and supported on {0, 1, . . . , n} so it suffices to compute its PMF functions, from which
one can trivially compute the CDF. We first rewrite the PMF of fX with r = pN ,

fX(x) =

(
r
x

)(
N−r
n−x

)(
N
n

) =
r!

x!(r − x)!
· (N − r)!

(n− x)!(N − r − (n− x))!
· n!(N − n)!

N !

=
n!

x! · (n− x)!
· r!

(r − x)!
· (N − r)!

(N − r − (n− x))!

=

(
n

x

)
·

x∏
i=1

(r − x + i) ·
n−x∏
j=1

(N − r − (n− x) + j)

n∏
k=1

1

(N − n + k)

=

(
n

x

)
·

x∏
i=1

r − x + i

N − x + i
·
n−x∏
j=1

(N − r − (n− x) + j)

N − n + m

The result follows from the fact that r
N → p, so for any fixed i and j,

lim
N→∞

r − x + i

N − x + i
= p and lim

N→∞

(N − r − (n− x) + j)

N − n + m
= 1− p

which implies that

lim
N→∞

fX(x) =

(
n

x

)
px(1− p)n−x.
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