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1 The Central Limit Theorem

Recall that if Xi are independent N(µ, σ2) random variables, then the stability property implies

X̄ =
1

n

n∑
i=1

Xi ∼ N

(
µ,
σ2

n

)
and T = nX̄ =

n∑
i=1

Xi ∼ N(nµ, nσ2).

The central limit theorem says that this holds in an approximate sense even if Xi are not normally
distributed.

Theorem 1 (Central Limit Theorem)

Suppose that X1, ..., Xn are independent random variables, each with a common cumulative dis-
tribution function FX . Suppose further that E(Xi) = µ, and Var(Xi) = σ2 < ∞. Then for all
x ∈ R

P

(
X̄ − µ

σ√
n

≤ x

)
→ Φ(x)

X̄ − µ
σ√
n

approx∼ N(0, 1),

as n→∞. Here Φ(x) is the CDF of a standard normal.

It other words, the CLT implies that if you have

1. have a set of independent and identically distributed random variables,

2. have finite common mean µ and finite common variance,

then the sample mean (or total) can be approximated by normal distribution (by standardization)

X̄
approx∼ N

(
µ,
σ2

n

)
and T = nX̄ =

n∑
i=1

Xi
approx∼ N

(
nµ, nσ2

)
.

1.1 Rules of Thumb

1.1.1 Continuity Correction

When we apply the CLT to discrete random variables taking integer values (or a subset of consecutive
integers), we need to apply a continuity correction to account for the fact the random variables can’t
take non-integer values:

To approximate P(a ≤ T ≤ b) we instead compute P(a− 0.5 ≤ T ≤ b+ 0.5).

The latter will give us a better approximation. We subtract or add 0.5 before standardization to
integer valued bounds a and b to our various inequalities when approximating discrete distributions
using the CLT, but it should not be applied when approximating continuous distributions.

Example 1. We want to compute P(0 ≤ T ≤ 1), but notice that the area under the continuous
approximation of the discrete PMF is closer if we integrate from −0.5 to 1.5.
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Remark 1. Whether or not we have strict inequalities matters when applying the continuity cor-
rection. To remember which way to apply the continuity correction, we should always write the
probabilities using inequalities before applying our rule to widen the interval.

For example, for integer valued x

P(T > x) = P(T ≥ x+ 1)
correction⇒ P(T ≥ x+ 1− 0.5) = P(T ≥ x+ 0.5) = P(T > x+ 0.5).

Other cases are similar, for example for integer valued x

P(T = x) = P(x ≤ T ≤ x)
correction⇒ P(x− 0.5 ≤ T ≤ x+ 0.5).

1.1.2 Sample Size Requirements

� General Rule: In general, the CLT often provides a reasonable approximation when n > 30.

� “Approximately Normal” Distributions: If the distribution of the observations is “close”
to being unimodal, not too skewed, and is “close” to being continuous, then the central limit
approximation can be reasonable for n ∈ [5, 15].

� “Not Approximately Normal” Distributions: If the distribution is highly skewed, or very
discrete, tcentral limit approximation can be reasonable for n > 50.

1.2 Normal Approximations of Important Distributions

We can use the CLT to approximate the distributions of important distributions we have already
encountered.

1.2.1 Normal Approximation of the Binomial Distribution

Since X ∼ Bin(n, p) can be written as X =
∑n
i=1Xi where the X1, . . . , Xn are independent Bin(1, p),

we can apply the CLT to
∑n
i=1Xi .

Theorem 2

If X ∼ Bin(n, p), then for large n

X − np√
np(1− p)

approx∼ N(0, 1).

1.2.2 Normal Approximation of the Poisson Distribution

If λ is a natural number, then X ∼ Poi(λ) can be written as X =
∑λ
i=1Xi where the X1, . . . , Xn are

independent Poi(1), we can apply the CLT to
∑λ
i=1Xi .

Theorem 3

If X ∼ Poi(λ), then for large λ
X − λ√

λ

approx∼ N(0, 1).
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1.3 Example Problems

1.3.1 Applications

Problem 1.1. A carton of wine consists of 20 winebottles. Suppose we can model the volume of wine
in each bottle as independent normal random variables X1, . . . , X20 where mean 1.05 litres and and
standard deviation

√
0.0004. What is the distribution of the total amount of wine in a carton, say T?

Solution 1.1. Since Xi are normally distributed, the total T =
∑2
i=1 0Xi is also normally distributed.

We need to find the mean and variance of T ,

E[T ] = E
[ 20∑
i=1

Xi

]
= 20E[X1] = 20 · 1.05 = 21

and by independence,

Var[T ] = Var

[ 20∑
i=1

Xi

]
=

20∑
i=1

Var(Xi) = 20 · 0.0004 = 0.008.

Therefore, T ∼ N(21, 0.008).

Problem 1.2. Harold is eating a box of chocolate right now (yes, right now). Each box contains 20
cubes, and it is supposed to have a total of 500 grams of chocolate in it. The weight of each chocolate
cube varies a little because they are hand-made from Switzerland. The weight W of each cube is
a random variable with mean µ = 25 grams, and the standard deviation σ = 0.1 grams. Find the
probability that a box has at least 500 grams of chocolate in it, assuming that the weight of each cube
is independent.

Solution 1.2. Let W1, . . . ,W20 be the weights of the cubes and T =
∑20
i=1Wi the total weight.

The W1, . . . ,W20 are independent with mean µ = 25, σ = 0.1, and by the CLT, T is approximately
N(20µ, 20σ2). Using Z-tables gives us

P(T ≥ 500) = P
(
T − 20 · µ√

20σ2
≥ 500− 20 · µ√

20σ2

)
≈ P(Z ≥ 0) = 1− Φ(0) = 0.5

Problem 1.3. In February this year, various Youtubers participated in a ‘100 cup challenge’ related
to the Roll Up the Rim to Win promotion at Tim Hortons. The advertised cance to win is 1/6.
Participants bought 100 promotional cups, and filmed themselves as they found out how many times
they’d won. We want to use the central limit theorem to estimate the probability a participant recorded
between 15 and 20 wins (inclusive).

1. Compute using the CLT without continuity correction.

2. Compute the probability exactly.

3. Compute using the CLT with continuity correction.

Note: think about the assumptions we must make when considering real-world examples!
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Solution 1.3.

CLT without Correction: Let Xi ∼ Bin
(
1, 1

6

)
, i = 1, ..., 100 and T =

100∑
i=1

Xi be the total wins. In

this case, we have

E[Xi] = p =
1

6
and Var(Xi) = p(1− p) =

1

6

(
1− 1

6

)
=

5

36
.

The CLT says that T ∼ N(np, np(1− p)) = N(100 · 1
6 , 100 · 5

36 ). Using Z-tables gives us

P(15 ≤ T ≤ 20) = P(T ≤ 20)− P(T < 15)

≈ P

(
T − np√
np(1− p)

≤ 20− np√
np(1− p)

)
− P

(
T − np√
np(1− p)

<
15− np√
np(1− p)

)
= P (Z ≤ 0.894)− P (Z < −0.447)

= 0.487.

Exact: We can compute the probability exactly since T ∼ Bin(100, 1/6), and so

P(15 ≤ T ≤ 20) =

20∑
x=15

(
100

x

)(
1

6

)x(
1− 1

6

)100−x

= 0.561

which is quite far away from the CLT approximation.

CLT with Correction: If we use correction, then we need to compute

P(14.5 ≤ T ≤ 20.5) = P(T ≤ 20.5)− P(T < 14.5)

≈ P

(
T − np√
np(1− p)

≤ 20.5− np√
np(1− p)

)
− P

(
T − np√
np(1− p)

<
14.5− np√
np(1− p)

)
= P (Z ≤ 1.029)− P (Z < −0.581)

= 0.568.

which is very close to the probability of 0.561.

Problem 1.4. Suppose X ∼ Poi(µ). Use the normal approximation to approximate

P(X > µ)

and compare this approximation with the true value when µ = 9.

Solution 1.4. Since X is discrete, we need to use the normal approximation with continuity correc-
tion. We have

P(X > 9) = P(X ≥ 10)⇒ P(X ≥ 10− 0.5) = P(X ≥ 9.5)

If we apply the normal approximation:

X − µ
√
µ

approx∼ Z ∼ N(0, 1)
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we can see that, with µ = 9:

P(X > 9.5) = P
(
X − µ
√
µ

>
9.5− µ
√
µ

)
≈ P(Z > 0.17) = 0.432.

Remark 2. We can compute the probability exactly

P(X > 9) = 1− P(X ≤ µ) = 1−
(
e−9 + 9e−9 + ...+

99

9!
e−9

)
= 0.4126,

which is quite close to the normal approximation with correction. If we didn’t apply the continuity
correction, then

P(X > µ) = P
(
X − µ
√
µ

>
µ− µ
√
µ

)
≈ P(Z > 0) = 0.5,

which is quite far off from the true value.

Problem 1.5. Let p be the proportion of Canadians who think Canada should adopt the US dollar.

(a) Suppose 400 Canadians are randomly chosen and asked their opinion. Let X be the number who
say yes. Find the probability that the proportion, X

400 , of people who say yes is within 0.02 of p,
if p = 0.20.

(b) Suppose for a future opinion poll we want to determine the number, n, to survey to ensure that
there is a 95% T

n lies within 0.02 of p. Suppose p = 0.20 is known.

(c) Repeat (b) when the value of p is unknown. (Note that this would be the more realistic situation
in the case of conducting an opinion poll.)

Solution 1.5. We want to apply the CLT.

Part (a): We have X ∼ Bin(n = 400, p = 0.2). Notice that

E[X] = np = 80 and Var(X) = np(1− p) = 64.

We want to compute

P
(∣∣∣∣Xn − p

∣∣∣∣ ≤ 0.02

)
= P

(
n(p− 0.02) ≤ X ≤ n(p+ 0.02)

)
= P

(
72 ≤ X ≤ 88

)
.

Since X is takes integer values and the bounds are also integer valued we need to apply the continuity
correction, so we instead compute

P
(

72− 0.5 ≤ X ≤ 88 + 0.5

)
= P

(
71.5 ≤ X ≤ 96.5

)
.

Splitting the probabilities, and standardizing gives us

P
(

71.5 ≤ X ≤ 88.5

)
= P

(
X ≤ 96.5

)
− P

(
X < 71.5

)
= P

(
X − 80√

64
≤ 88.5− 80√

64

)
− P

(
X − 80√

64
<

71.5− 80√
64

)
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Using the CLT, this is approximately equal to

P
(
Z ≤ 88.5− 80√

64

)
− P

(
Z <

71.5− 80√
64

)
= P(Z ≤ 1.0625)− P(Z ≤ −1.0625) = 2P(Z ≤ 1.0625)− 1 = 2(0.85543)− 1 = 0.71086.

Remark 3. Notice that we applied the continuity correction to X and not X
n , since X is the random

variable that takes integer values.

Part (b): It is a bit tricky to apply the continuity correction in this problem because we are solving
for n and we don’t necessarily know if n · 0.02 will be an integer. However, we will see that n is quite
large so the effect of the continuity correction will be small.

Let X̄ = X
n be the sample mean. We want to find a n such that

P
(∣∣∣∣Xn − p

∣∣∣∣ ≤ 0.02

)
= P

(
|X̄ − p| ≤ 0.02

)
= 0.95

Since

E[X̄] = p and Var(X̄) =
p(1− p)

n

the CLT implies that

P
(
|X̄ − p| ≤ 0.02

)
= P

(
|X̄ − p|√
p(1−p)
n

≤ 0.02√
p(1−p)
n

)
≈ P

(
|Z| ≤ 0.02√

p(1−p)
n

)
.

We want the right hand side to be 0.95, so we use quantiles to find the critical value. Since

P(|Z| ≤ x) = P(−x ≤ Z ≤ x) = P(Z ≤ x)− P(Z ≤ −x)

= P(Z ≤ x)− (1− P(Z ≤ x)) = 2P(Z ≤ x)− 1

using the quantile table, we have that

P(|Z| ≤ x) = 0.95 ⇐⇒ 2P(Z ≤ x)− 1 = 0.95 ⇐⇒ P(Z ≤ x) = 0.975 ⇐⇒ x = F−1
Z (0.975) = 1.96.

Therefore, we require that (with p = 0.2)

0.02√
p(1−p)
n

=
0.02√

0.2(1−0.2)
n

= 1.96 =⇒ n = 1536.64

so we should take at least n = 1537 samples.

Remark 4. By the 95% rule we know that approximately 95% of the probability lies within two
standard deviations. In the computations above, we carefully showed this result by finding the n such
that the 0.02√

Var(Xn )
= 1.96, which is roughly two standard deviations.

Part (c): If p is unknown, then we want to make sure that our sample size is large enough so that
we can guarantee a 0.95 accuracy for any p. That is, we want

P
(
|X̄ − p| ≤ 0.02

)
≥ 0.95
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for all p. If p = 0 or p = 1, then the problem is trivial. If p ∈ (0, 1), then the computations from above
implies that

P
(
|X̄ − p| ≤ 0.02

)
≈ P

(
|Z| ≤ 0.02√

p(1−p)
n

)
This is larger than 0.95 whenever 0.02√

p(1−p)
n

≥ 1.96. Thus, for this to be larger than 0.95 to hold for all

p, we want to find n such that
0.02√
p(1−p)
n

≥ 1.96

for any all p. Notice that p(1− p) is maximized when p = 1
2 , so we have

0.02√
p(1−p)
n

≥ 0.02√
0.5(1−0.5)

n

with equality when p = 0.5. Since

0.02√
0.5(1−0.5)

n

= 1.96 =⇒ n = 2401

we need n = 2401 to achieve the desired accuracy for any p = 0.5. Therefore, by monotonicity

P
(
|Z| ≤ 0.02√

p(1−p)
n

)
≥ P

(
|Z| ≤ 0.02√

0.5(1−0.5)
n

)
= 0.95

which gives us the required accuracy for all p.

Remark 5. By the 95% rule we know that approximately 95% of the probability lies within two
standard deviations. In the computations above, we found that in the worst case scenario when p = 1

2
taking n such that the 0.02√

Var(Xn )
= 1.96 achieved the required accuracy. Since n is taken large enough

to be close in the worst case scenario, we get the required accuracy in all scenarios.

1.3.2 Derivations and Proofs

Problem 1.6. If
X̄ − µ
σ/
√
n

approx∼ N(0, 1)

show that

X̄
approx∼ N

(
µ,
σ2

n

)
and T = nX̄ =

n∑
i=1

Xi
approx∼ N

(
nµ, nσ2

)
.

Solution 1.6. Let Z ∼ N(0, 1). By standardization, we have

X̄ − µ
σ/
√
n

approx∼ Z =⇒ X̄ =
σ√
n
Z + µ

so X̄
approx∼ N

(
µ, σ

2

n

)
. Likewise, using the fact that T = nX̄

X̄ − µ
σ/
√
n

approx∼ Z =⇒ T = nX̄ =
√
nσZ + nµ

so T
approx∼ N

(
nµ, nσ2

)
.
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Problem 1.7. Prove the following Normal approximation results

1. If X ∼ Bin(n, p), then for large n

X − np√
np(1− p)

approx∼ N(0, 1).

2. If X ∼ Poi(λ), then for large λ
X − λ√

λ

approx∼ N(0, 1).

Solution 1.7.

1. Since X ∼ Bin(n, p) can be written as X =
∑n
i=1Xi where the X1, . . . , Xn are independent

Bin(1, p) (which have mean p and variance p(1− p)), we can apply the CLT to
∑n
i=1Xi,

n∑
i=1

Xi ∼ N(np, np(1− p))

so the result now follows from standardization.

2. If λ = n is a natural number, then X ∼ Poi(n) can be written as X =
∑λ
i=1Xi where the

X1, . . . , Xn are independent Poi(1) (which have mean 1 and variance 1), we can apply the CLT

to
∑λ
i=1Xi,

n∑
i=1

Xi ∼ N(n, n)

so the result now follows from standardization.
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2 Moment Generating Functions

So far we have seen that the distribution of a random variable can be characterized by the PMF/PDF
and the CDF. We now show that it is also possible to encode the distribution through another object
called the moment generating function.

Definition 1. The moment generating function (MGF) of a random variable X is given by the function

MX(t) = E[etX ],

provided the expression exists in a neighbourhood of zero, say for t ∈ (−a, a).

If X is discrete with PMF fX(x), then

MX(t) = E[etX ] =
∑

x∈X(S)

etxfX(x)

and if X is continuous with PDF fX(x), then

MX(t) = E[etX ] =

∫ ∞
−∞

etxfX(x) dx.

Remark 6. The probability generating function is another generating function we have already seen.
It is defined by GX(s) = E[sX ] and it is just a change of variables of the MGF since

GX(s) = E[sX ] = E[eln(sX)] = E[eln(s)X ] = MX(ln(s)).

2.1 Properties

If X has finite support on {x1, . . . , xn} with PMF fX , then

MX(t) = fX(x1)etx1 + · · ·+ fX(xn)etxn

so it is easy to read off the PMF given the MGF. We see that even for more complicated distributions
the MGF still encodes the distribution of the random variables.

1. Moments: The MGF encodes all the moments of X. Assuming that MX(t) is defined in a
neighbourhood of t = 0,

dk

dtk
MX(0) = E[Xk] for all k ≥ 0.

This follows from Taylor’s theorem and linearity holds even with infinite sums provided that
MX(t) is defined in a neighbourhood of t = 0

MX(t) = E
[ ∞∑
j=0

tjXj

j!

]
=

∞∑
j=0

tj E[Xj ]

j!
.

2. Uniqueness Theorem: If X and Y have MGFs MX(t) and MY (t) defined in neighbourhoods
of the origin, and MX(t) = MY (t) for all t where they are defined, then

X ∼ Y.

3. Independent Sums: Suppose that X and Y are independent and each have moment generating
functions MX(t) and MY (t). Then the moment generating function of X + Y is

MX+Y (t) = E
(
et(X+Y )

)
= E

(
etX
)
E
(
etY
)

= MX(t)MY (t).

This is a useful property because the distribution of the sum of random variables can now be
easily computed (which required computing iterated sums).
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2.2 Moment Generating Functions of Common Distributions

1. Discrete Uniform: If X ∼ U[a, b] (discrete) then

MX(t) =
1

b− a+ 1

b∑
x=a

etx for t ∈ R

2. Binomial: If X ∼ Bin(n, p) then

MX(t) = (pet + (1− p))n for t ∈ R

3. Negative Binomial: If X ∼ NegBin(k, p) then

MX(t) =

(
p

1− (1− p)et

)k
for t ≤ − ln(1− p)

4. Poisson: If X ∼ Poi(λ) then

MX(t) = eλ(et−1) for t ∈ R

5. Continuous Uniform: If X ∼ U[a, b] (continuous) then

MX(t) =

{
ebt−eat
(b−a)t t 6= 0

1 t = 0

6. Exponential: If X ∼ Exp(θ) (waiting time parametrization) then

MX(t) =
1

1− θt
for t <

1

θ

7. Normally Distributed: If X ∼ N(µ, σ2), then

MX(t) = eµt+
σ2t2

2 for t ∈ R

2.3 Example Problems

2.3.1 Applications

Problem 2.1. Suppose that X has MGF

MX(t) = 0.3 + 0.2et + 0.5e2t

What is the PMF of X?

Solution 2.1. We have

MX(t) = 0.3 + 0.2et + 0.5e2t = 0.3e0·t + 0.2e1·t + 0.5e2·t.

Then reverse engineering the PMF from the MGF implies that

fX(0) = P(X = 0) = 0.3, fX(1) = P(X = 1) = 0.2 FX(2) = P(X = 2) = 0.5.

It is clear that at least for finitely supported PMF, the MGF is simply another way of writing encoding
the distribution.
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Problem 2.2. Use the MGFs to show that if X ∼ Poi(λ), then E[X] = λ and Var(X) = λ

Solution 2.2. The MGF is
MX(t) = eλ(et−1).

Taking derivatives, we have

M ′X(t) = eλ(et−1)λet ⇒ E(X) = M ′X(0) = λ.

To compute the variance, we take the second derivative

M ′′X(t) = eλ(et−1)λet + eλ(et−1)(λet)2 ⇒ E(X2) = M ′′X(0) = λ2 + λ

and conclude
Var(X) = E(X2)− E(X)2 = λ2 + λ− λ2 = λ.

Problem 2.3. Use MGFs to show that if X ∼ Poi(λ) and Y ∼ Poi(µ) are independent, then X+Y ∼
Poi(λ+ µ).

Solution 2.3. We know that MX(t) = eλ(et−1) and MY (t) = eµ(et−1). Since X and Y are indepen-
dent, the MGF of X + Y is

MX+Y (t) = MX(t)MY (t) = eλ(et−1eµ(et−1) = e(λ+µ)(et−1)

which we recognize as the MGF of a Poi(λ + µ) random variables. By uniqueness of the MGF, we
conclude X + Y ∼ Poi(λ+ µ).

Problem 2.4. Use MGFs to show that if X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) are independent, then

X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

Solution 2.4. We know that MX(t) = eµ1t+
σ2

1t
2

2 and MY (t) = eµ2t+
σ2

2t
2

2 . Since X and Y are inde-
pendent, the MGF of X + Y is

MX+Y (t) = MX(t)MY (t) = eµ1t+
σ2

1t
2

2 eµ2t+
σ2

2t
2

2 = e(µ1+µ2)t+
(σ2

1σ
2
2)t2

2

which we recognize as the MGF of a N(µ1 +µ2, σ
2
1 +σ2

2) random variables. By uniqueness of the MGF,
we conclude X + Y ∼ N(µ1 + µ2, σ

2
1 + σ2

2).

Problem 2.5. Use MGFs to show that for large n and small p such that µ = np, we can approximate
the Bin(n, p) distribution with a Poi(µ) distribution.

Solution 2.5. By the uniqueness theorem, we can prove this by showing that the MGF of X ∼
Bin(n, p) converges to the MGF of Y ∼ Poi(µ) as n→∞ where µ = np⇔ p = µ

n . Indeed,

MX(t) = (pet + 1− p)n = (1 + p(et − 1))n =
(

1 +
µ

n
(et − 1)

)n
.

Since for every x

lim
n→∞

(
1 +

x

n

)n
= ex

we have

lim
n→∞

MX(t) = lim
n→∞

(
1 +

µ

n
(et − 1)

)n
= eµ(et−1) = MY (t),
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2.3.2 Proofs and Derivations

Problem 2.6. Prove the following formulas for the MGFs of common distributions

1. Poisson: If X ∼ Poi(λ) then

MX(t) = eλ(et−1) for t ∈ R

2. Normal Distribution: If X ∼ N(µ, σ2), then

MX(t) = eµt+
σ2t2

2 for t ∈ R

3. Negative Binomial: If X ∼ NegBin(k, p) then

MX(t) =

(
p

1− (1− p)et

)k
for t ≤ − ln(1− p)

Solution 2.6. The computation of all the MGFs use similar tricks we have seen before (summation
formulas, reducing to sums of PMF/integral PDF, etc)

Poisson: The MGF is computed using the exponential sum

MX(t) = E(etX) =

∞∑
x=0

etxe−λ
λx

x!
= e−λ

∞∑
x=0

(etλ)x

x!
= e−λee

tλ = eλ(et−1).

Normal Distribution: The MGF is computed by completing the square. We have

MX(t) = E(etX) =
1√

2πσ2

∫ ∞
−∞

etxe−
(x−µ)2

2σ2 dx =
1√

2πσ2

∫ ∞
−∞

e−
x2−2(µ+tσ2)x+µ2

2σ2 dx.

We want to rewrite the integral in terms of the integral of a PDF, so we complete the square

x2 − 2(µ+ tσ2)x+ µ2 = x2 − 2(µ+ tσ2)x+ (µ+ tσ2)2 − (µ+ tσ2)2 + µ2

= (x− (µ+ tσ2))2 − 2tσ2µ− t2σ4

so

1√
2πσ2

∫ ∞
−∞

e−
x2−2(µ+tσ2)x+µ2

2σ2 dx =
1√

2πσ2

∫ ∞
−∞

e−
(x−(µ+tσ2))2−2tσ2µ−t2σ4

2σ2 dx

= eµt+
σ2t2

2
1√

2πσ2

∫ ∞
−∞

e−
(x−(µ+tσ2))2

2σ2 dx︸ ︷︷ ︸
=1 sum of PDF of N(µ+ tσ2, σ2)

.

Negative Binomial: We first consider the case when Y ∼ NegBin(1, p) = Geo(p). In this case, using
the geometric series (which exists for |(1− p)et| < 1 =⇒ t < − ln(1− p))

MY (t) =

∞∑
x=0

etxp(1− p)x =

∞∑
x=0

p((1− p)et)x =
p

1− (1− p)et
.

We recall that X ∼ NegBin(k, p) is the sum of k independent Geo(p) random variables. Therefore,
X = Y1 + · · ·+ Yk and the sum of independent random variables formula for MGFs give

MX(t) = MY1+···+Yk(t) = MY1
(t) · · ·MYk(t) = Mk

Y (t) =

(
p

1− (1− p)et

)k
,

which exists under the same condition as MY (t).
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Problem 2.7. (?) Suppose that MX(t) is defined for all t ∈ [−a, a] for some a > 0. Prove that

E[Xk] =
dk

dtk
MX(0) =

dk

dtk
MX(t)

∣∣∣∣
t=0

∀k ≥ 0.

Solution 2.7. Assuming that we can interchange the differentiation and integration, we have

dk

dtk
MX(t) =

dk

dtk
E[etX ] = E

[
dk

dtk
etX
]

= E[XketX ]

Therefore,
dk

dtk
MX(0) = E[Xke0·X ] = E[Xk].

The interchange between the differentiation and expectation is justified by a result called the
dominated convergence theorem. The technical assumption that MX(t) is defined for all t ∈ [−a, a] for
some a > 0 is required to find a dominating function. In the case when X has finite support, then the
interchange of differentiation and expectation simply follows from the linearity of the differentiation
operator.

Problem 2.8. (?) Prove the uniqueness theorem: If X and Y have MGFs MX(t) and MY (t) defined
in neighbourhoods of the origin, and MX(t) = MY (t) for all t where they are defined, then

X ∼ Y.

Solution 2.8. The full proof of this statement is too advanced for this course. However, we can do
a simpler proof of this result for discrete random variables. We have already seen that if X has finite
support, then we can simply read off the PMF from the MGF. In particular, if X and Y are supported
on finitely many points and they have the same MGFs, then they define the same PMFs so they have
the same distribution.

We will prove that this logic extends to X that are supported on the natural numbers. Consider
the probability generating function GX(s) = MX(ln(s)) = E[sX ] and suppose that GX(s) is finite for
some s0. By definition, we have

GX(s) =

∞∑
x=0

sxfX(x) = fX(0) + s1fX(1) + s2fX(2) + . . .

Notice that

GX(0) = fX(0) = P(X = 0), G′X(0) = fX(1) = P(X = 1), G′′X(s) = 2fX(2) = 2P(X = 2).

Continuing inductively, we see that dk

dsk
GX(0) = k!P(X = k). In particular, the moment generating

function, and the corresponding probability generating function encodes the PMF. So if X and Y are
supported on finitely many points and they have the same MGFs, then they encode the same PMFs
so they have the same distribution.

Problem 2.9. (?) Prove the central limit theorem under the additional assumption that the MGF
of X is finite for all t ∈ [−a, a] for some a > 0. Suppose that X1, ..., Xn are independent random
variables, each with a common cumulative distribution function FX . Suppose further that E(Xi) = µ,
and Var(Xi) = σ2 <∞. Then for all x ∈ R

P

(
X̄ − µ

σ√
n

≤ x

)
→ Φ(x)

as n→∞.
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Solution 2.9. We will show that as n→∞, the MGF of X̄−µσ√
n

converges to the MGF of the standard

normal distribution Z ∼ N(0, 1),

MZ(t) = e
t2

2 .

Consider the normalized random variables Yi = Xi−µ
σ . Notice that Yi satisfies

E[Yi] = E
[Xi − µ

σ

]
=

E[Xi]− µ
σ

= 0

and

Var(Yi) = Var
[Xi − µ

σ

]
=

1

σ2
Var(Xi) = 1.

We have

X̄ − µ
σ√
n

=
1
n

∑n
i=1Xi − µ
σ√
n

=
1
n

∑n
i=1(Xi − µ)

σ√
n

=

1√
n

∑n
i=1(Xi − µ)

σ
=

1√
n

n∑
i=1

Yi.

By the independence property of the MGFs,

M X̄−µ
σ√
n

(t) = E[e
t√
n

∑n
i=1 Yi ] =

n∏
i=1

E[e
t√
n
Yi ] =

n∏
i=1

MYi

( t√
n

)
= Mn

Y

( t√
n

)
. (1)

By Taylor’s theorem, we have that MY (t) satisfies,

MY (t) = MY (0) + tM ′Y (0) +
t2

2
M ′′Y (0) + o(t2)

where the error term o(t2) satisfies limt→0
o(t2)
t2 = 0. Since the derivatives of the MGFs encodes the

moments, we have that

MY (0) = 1, M ′Y (0) = E[Y ] = 0, M ′′Y (0) = E[Y 2] = Var(Y ) + (E[Y ])2 = 1.

Therefore,

MY (t) = 1 +
t2

2
+ o(t2).

Combining this with (1) results in

M X̄−µ
σ√
n

(t) =
(

1 +
t2

2n
+ o
( t2
n

))n
.

Since limn→∞(1 + x
n )n = ex, we have that (the error term o( t

2

n ) will not affect the limit)

lim
n→∞

M X̄−µ
σ√
n

(t) = lim
n→∞

(
1 +

t2

2n
+ o
( t2
n

))n
= e

t2

2 = MZ(t),

so the uniqueness property implies that X̄−µ
σ√
n

has the same asymptotic distribution as a standard

normal.

Remark 7. We used the assumption that the MGF exists and is finite on an interval around 0 to use
the uniqueness and differentiation properties of the MGF. We were a bit sloppy in the usage of the
error terms o(t2) and the application of Taylor’s theorem for a random remainder term, but this can
be justified using an interchange of limit and expected value by the dominated convergence theorem.
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