
April 13, 2024 STAT230 – Week 11 Justin Ko

1 Relationships Between Variables

1.1 Covariance

The covariance measures the joint variability of two random variables.

Definition 1. For two random variables X and Y , we define

Cov(X,Y ) = E [(X − E(X))(Y − E(Y ))] .

as the covariance between X and Y , provided the expression exists.

1.1.1 Properties

1. Relationship with Variance: Cov(X,X) = Var(X).

2. Equivalent formula:
Cov(X,Y ) = E[XY ]− E[X]E[Y ].

3. Relationship with independence I: If X and Y are independent,

Cov(X,Y ) = 0.

The converse of this statement is false!. There are pairs of random variables that have zero
covariance, but are dependent (see Problem 1.10).

4. Relationship with Independence II: If X and Y have zero covariance, then

E[XY ] = E[X]E[Y ].

5. Cauchy–Schwarz Inequality: For any random variables X and Y ,

|E[XY ]| ≤
√
E(X2)

√
E(Y 2).

6. The Sign of the Covariance: Suppose X,Y are positively related (when X large, Y likely large;
when X small, Y likely small), then

Cov(X,Y ) > 0

Conversely, suppose X,Y are negatively related (when X large, Y likely small; when X small,
Y likely large), then

Cov(X,Y ) < 0.
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1.2 Correlation

The correlation measures how linearly related two random variables are.

Definition 2. The correlation of X and Y , denoted corr(X,Y ), is defined by

ρ = corr(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
=

Cov(X,Y )

SD(X)SD(Y )
.

We say that X and Y are uncorrelated if Cov(X,Y ) = 0 (or equivalently corr(X,Y ) = 0). We have
implicitly assumed that X and Y have non-zero variance in this definition

1.2.1 Properties

1. ρ = corr(X,Y ) has the same sign as Cov(X,Y )

2. −1 ≤ ρ ≤ 1

3. |ρ| = 1 ⇔ X = aY + b. If a > 0, then ρ = 1, and if a < 0, then ρ = −1.

4. X,Y independent ⇒ corr(X,Y ) = 0

5. corr(X,Y ) = 0 6⇒ X,Y independent in general

6. corr(X,X) = Cov(X,X)/SD(X)2 = Var(X)/Var(X) = 1

7. Correlation does not imply causation: Two variables being correlated does not always imply that
one variable causes another to behave in certain ways.

1.3 Linear Combinations of Random Variables

Definition 3. A linear combination of the random variables X1, ..., Xn is any random variable of the
form

n∑
i=1

aiXi

where a1, ..., an ∈ R.

Example 1. Many common statistics are given by linear combinations of random variables.

1. The Total: Taking ai = 1 for all i gives us the total of X1, . . . , Xn

T =

n∑
i=1

Xi.

2. The Sample Mean: Taking ai = 1
n for all i gives us the sample mean of X1, . . . , Xn

X̄ =
1

n

n∑
i=1

Xi
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1.3.1 Properties

Let a1, . . . , an, b1, . . . , bn ∈ R. We have the following properties about linear combinations of random
variables.

1. Linearity of Expectation: For any random variables X1, . . . , Xn,

E
[ n∑
i=1

aiXi

]
=

n∑
i=1

ai E[Xi].

2. Bi-Linearity of Covariance: For any random variables X1, . . . , Xn and Y1, . . . , Ym,

Cov

[ n∑
i=1

aiXi,

m∑
i=1

biYi

]
=

n∑
i=1

m∑
j=1

aibjCov(Xi, Yj).

In particular, for random variables X,Y, U, V be random variables, and a, b, c, d ∈ R. Then,

Cov(aX + bY, cU + dV )

= acCov(X,U) + adCov(X,V ) + bcCov(Y,U) + bdCov(Y, V )

3. Variance of Linear Combinations: The following result shows how the variance of a linear
combination is “broken down” into pieces:

Var

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2i Var(Xi) + 2
∑

1≤i<j≤n

aiajCov(Xi, Xj).

In particular, for random variables X,Y , and a, b ∈ R. Then,

Var(aX + bY ) = a2 Var(X) + b2 Var(Y ) + 2abCov(X,Y ).

If the X1, . . . , Xn are independent, then they are uncorrelated, so in this case

Var

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2i Var(Xi)

4. Stability of Normally Distributed Random Variables: The linear combination of indepen-
dent normally distributed random variables are normally distributed. Let Xi ∼ N(µi, σ

2
i ), i =

1, 2, . . . , n be independent then,

n∑
i=1

(aiXi + bi) ∼ N

(
n∑
i=1

aiµi + bi,
n∑
i=1

a2iσ
2
i

)
.

In particular, if X ∼ N(µ, σ2) and Y = aX + b, where a, b ∈ R, then we have the following
standardization result

Y ∼ N(aµ+ b, a2σ2).

Remark 1. Notice that by linearity, we have

E
[ n∑
i=1

(aiXi + bi)

]
=

n∑
i=1

(ai E[Xi] + bi) =

n∑
i=1

aiµi + bi

and by independence

Var

( n∑
i=1

(aiXi + bi)

)
= Var

( n∑
i=1

aiXi

)
=

n∑
i=1

a2i Var(Xi) =

n∑
i=1

a2iσ
2
i

which precisely matches the mean and variance of the linear combination.
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1.4 Indicator Random Variables

A random variable taking values in natural numbers can often be expressed as a sum of indicator
random variables. Linearity of expectation provides a powerful tool to compute expected values and
variances of sums of indicator random variables.

Definition 4. Let A ⊂ S be an event. We say that 1A is the indicator random variable of the event
A. 1A is defined by:

1A(ω) =

{
1 ω ∈ A,

0 ω ∈ Ac

Remark 2. The random variable 1A(ω) is a Bernoulli random variable where a success is the occur-
rence of the event A.

1.4.1 Properties

1. The products of indicator random variables is the indicator of the intersection of events

1A1B =

{
1 ω ∈ A ∩B,

0 ω ∈ (A ∩B)c

2. E[1A] = P(A)

3. Var(1A) = P(A)(1− P(A))

4. Cov(1A,1B) = P(A ∩B)− P(A)P(B)

1.5 Example Problems

1.5.1 Applications

Problem 1.1. Let
(X1, X2, X3) ∼ Mult(10, 0.5, 0.3, 0.2).

Compute Cov(X1, X2).

Solution 1.1. From the properties of the multinomial distribution (see Week 10), we know that if
(X1, . . . , Xk) ∼ Mult(n, p1, . . . , pk) then

E[XiXj ] = n(n− 1)pipj , E[Xi] = npi.

Applied to this problem using the equivalent formula for the covariance,

Cov(X1, X2) = E[X1X2]− E[X1]E[X2] = n(n− 1)p1p2 − np1np2 = −np1p2 = −10 · 0.5 · 0.3 = −1.5.

Problem 1.2. In a manufacturing process, two pieces of metal are combined to form a new piece
of metal. Due to variations in the production process, we assume that the lengths of the two pieces,
say L1 and L2, follow continuous uniform distributions as L1 ∼ U(0.9, 1.1) and L2 ∼ U(1.5, 1.7).
Furthermore, due to variations joining process of the two pieces, the length of the new piece is not
exactly L1 + L2, but instead L = L1 + L2 + ε where ε ∼ N(0, 0.12). Compute the expected total
length, E(L).
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Solution 1.2. From the formula sheet, we see E(L1) = 0.9+1.1
2 = 1, E(L2) = 1.5+1.7

2 = 1.6 and
E(ε) = 0. By linearity,

E(L) = E(L1 + L2 + ε) = E(L1) + E(L2) + E(L3) = 1 + 1.6 + 0 = 2.6.

Problem 1.3. Let X,Y be independent random variables with Var(X) = Var(Y ) = 1. What is
Var(X − Y )?

Solution 1.3. By independence, Cov(X,Y ) = 0, so the variance for linear combinations formula
implies

Var(X − Y ) = Var(X) + (−1)2 Var(Y )− 2Cov(X,Y ) = 1 + 1 = 2.

Problem 1.4. In a certain cooking process, the target temperature, say C, follows a normal distri-
bution (in celsius) with mean 57 and standard deviation 2. Your American friend asks you: What is
the distribution of the target temperature in Fahrenheit?

Aside: The relationship between the temperature in Celsius c and Fahrenheit f is f = c · 9/5 + 32.

Solution 1.4. By the stability property, C · 9/5 + 32 ∼ N(57 · 9/5 + 32, (9/5)2 · 22) = N(134.6, 12.96).

Problem 1.5. Let X ∼ N(µ1, σ
2) be independent of Y ∼ N(µ2, σ

2). What is the distribution of
X − Y ?

Solution 1.5. By the stability property, we have E[X − Y ] = µ1 − µ2 and Var(X − Y ) = Var(X) +
Var(Y ) = 2σ2, so

X − Y ∼ N(µ1 − µ2, 2σ
2).

Problem 1.6. Three cylindrical parts are joined end to end to make up a shaft in a machine: 2 type-A
parts and 1 type-B part. The lengths of the parts vary a little, and have the following distributions:

A ∼ N(6, 0.4), B ∼ N(35.2, 0.6).

The overall length of the assembled shaft must lie between 46.8 and 47.5 or else the shaft has to be
scrapped. Assume the lengths of different parts are independent. What percentage of assembled shafts
has to be scrapped?

Solution 1.6. Let A1, A2 and B denote the three independent parts. The total length is L = A1 +
A2 +B satisfies

L ∼ N(6 + 6 + 35.2, 0.4 + 0.4 + 0.6) ⇒ L ∼ N(47.2, 1.4)

The part is scrapped if L < 46.8 or L > 47.5, so

P(“scrapped”) = P(L < 46.8) + P(L > 47.5)

= P
(
Z <

46.8− 47.2√
1.4

)
+ P

(
Z >

47.5− 47.2√
1.4

)
= Φ(−0.37) + (1− Φ(0.27))

= (1− Φ(0.37)) + (1− Φ(0.27))

= 0.749.

Page 5 of 13



April 13, 2024 STAT230 – Week 11 Justin Ko

Remark 3. A common mistake is to say that A1 + A2 +B is the same as L = 2A1 +B (A1 and A2

have the same distribution, after all), and conclude

L = 2A1 +B ∼ N(2 · 6 + 35.2, 22 · 0.4 + 0.6)⇒ L ∼ N(47.2, 2.2).

The linearity of expectation (which holds even if the random variables are dependent) is not affected
by this mistake; but the variance is affected by this mistake. This is because A1 + A2 and 2A1 are
very different objects since the first is a sum of two independent random variables and the latter is the
sum of two very dependent random variables.

Problem 1.7. Suppose that the height of adult males in Canada is normally distributed with a mean
of 70 inches and variance of 42 inches, and let X1, ..., X10 denote the heights of a random sample of
adult males. Suppose X̄10 denotes the sample mean of these heights.

Let
p1 = P(68 ≤ X1 ≤ 72)

and
p10 = P(68 ≤ X̄10 ≤ 72).

Which of the following is true?

1. p1 > p10

2. p1 = p10

3. p1 < p10

Solution 1.7. The interval contains the mean, so this result should be intuitive because a larger
sample means less variance, so p10 should be bigger. To reinforce this, we can compute this explicitly.

We find

p1 = P(68 ≤ X1 ≤ 72)

= P
(

68− 70

4
≤ Z ≤ 72− 70

4

)
, Z ∼ N(0, 1)

= Φ(0.5)− Φ(−0.5) = 2Φ(0.5)− 1

= 2 · 0.69146− 1 = 0.38292

Next,

X̄10 =
1

10

10∑
i=1

Xi ∼ N

(
1

10

10∑
i=1

70,
1

102

10∑
i=1

42

)
⇒ X̄10 ∼ N(70, 1.6)

so

p10 = P(68 ≤ X̄10 ≤ 72)

= P
(

68− 70√
1.6

≤ Z ≤ 72− 70√
1.6

)
, Z ∼ N(0, 1)

= Φ(1.58)− Φ(−1.58) = 2Φ(1.58)− 1

= 2 · 0.94295− 1 = 0.8859

Problem 1.8. Let A be an event and p = P(A) the probability of A. At which value of p is Var(1A)
maximized?
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Solution 1.8. Using the variance of a Bernoulli random variable, we have

Var(1A) = f(p) = p(1− p) = p− p2

This is a downward facing parabola, so we can find the critical point

f ′(p) = 1− 2p = 0 =⇒ p =
1

2

which maximizes the variance, f(1/2) = 1/4.

Remark 4. Intuitively, the variance is maximized when there’s no tendency for either heads (1) or
tails (0), so when p = 1/2. If p = 3/4, the random variable is less variable, as there’s a tendency for
success, for instance.

Problem 1.9. N passengers board a plane with N seats, where N > 1. Despite every passenger
having an assigned seat, when they board the plane they sit in one of the remaining available seats
at random. Show that the mean and variance of the number of people sitting in the correct seat once
everyone is on board are both 1 (independent of the number N of passengers, weirdly enough).

Solution 1.9. This is a classical problem called the matching problem. Let X denote the number of
people sitting in the correct of seat once everyone is on board, and let Ai be the event that the ith
passenger is in the correct seat. We have

1Ai =

{
1 the ith passenger is in the correct seat

0 the ith passenger is not in the correct seat .

Clearly, X =
∑n
i=1 1Ai . We can now compute the mean and variance.

Expected Value: By linearity of expectation

E[X] =

n∑
i=1

E[1Ai ] =

n∑
i=1

P(Ai).

By symmetry, we have that the probability that the ith passenger is in the correct seat is

P(Ai) =
1

n

since the seat the ith passenger sits in is uniform over the n possible seats. Therefore,

E[X] =

n∑
i=1

E[1Ai ] =

n∑
i=1

P(Ai) =

n∑
i=1

1

n
= 1.

Variance: By the linearity of expectation

E[X2] = E
[( n∑

i=1

1Ai

)2]
=

n∑
i,j=1

E[1Ai1Aj ].

We have two cases

1. i = j : Suppose that i = j. Since 1(Ai)1(Ai) = 1 if an only if Ai happens, so we have

E[1Ai1Ai ] = E[1Ai ] = P(Ai) =
1

n

as we computed before.
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2. i 6= j : Suppose that i 6= j. Since 1Ai1Aj = 1 if an only if Ai and Aj happens

E[1Ai1Aj ] = P(Ai ∩Aj) =
1

n(n− 1)
.

Note that the events Ai and Aj are not independent, so we can’t simply multiply the probabilities.
Instead, we can use the fact that sets the i and j passengers sit in are uniform over the n(n− 1)
possible seats for two passengers.

Since there are n(n− 1) ways to pick indices i 6= j and n ways to pick indices i = j, we have

E[X2] =

n∑
i,j=1

E[1Ai1Aj ] =
∑
i=j

E[1Ai1Ai ] +
∑
i6=j

E[1Ai1Aj ] =
n

n
+
n(n− 1)

n(n− 1)
= 2.

Therefore,
Var(X) = E[X2]− (E[X])2 = 2− 1 = 1.

Remark 5. Instead of using the uniform distribution and symmetry, we could argue that

P(Ai) =
(n− 1)!

n!
=

1

n

since there are (n−1)! seating patterns where the ith passenger is in the right seat and n! total seating
patterns (all of which are equally likely).

Likewise, we have

P(Ai ∩Aj) =
1

n(n− 1)
=

(n− 2)!

n!
=

1

n(n− 1)
.

since there are (n − 2)! seating patterns where the ith and jth passenger is in the right seat and n!
total seating patterns (all of which are equally likely).

Yet another way to compute the probability is to argue sequentially using the chain rule,

P(Ai ∩Aj) = P(Ai |Aj)P(Aj) =
1

n− 1
· 1

n
=

1

n(n− 1)
,

since the probability the jth passenger sits in the right seat is 1
n and the probability the ith passenger

sits in the right seat given that the jth passenger is in the right seat is 1
n−1 since the jth passenger is

already in the correct seat so there are n− 1 seats left.

Remark 6. We could have also used the formula for the variance of a linear combination, but the no-
tation is slightly more cumbersome. Using expected values is simpler because computing probabilities
are easier than computing variances of Bernoulli random variables.

1.5.2 Proofs and Derivations

Problem 1.10. Suppose that X and Y are independent. Show that

Cov(X,Y ) = 0.

Show that the converse is false by providing a counterexample.

Solution 1.10. Suppose that X and Y are independent. We know that E[XY ] = E[X]E[Y ]. There-
fore, using the equivalent formula,

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[X]E[Y ]− E[X]E[Y ] = 0.
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Counterexample: Let X ∼ U(−1, 1), and let Y = X2. X and Y are not independent because

0 = P
(
X >

1

2
, Y <

1

4

)
6= P

(
X >

1

2

)
P
(
Y <

1

4

)
> 0

since X > 1
2 =⇒ X2 > 1

4 so it is impossible that Y = X2 < 1
4 as well. However, we can compute the

covariance,
Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[X3]− E[X]E[X2] = 0

since the PDF of X is symmetric, so E[X3] = 0 and E[X] = 0.

Problem 1.11. Prove the Cauchy–Schwarz inequality,

|E[XY ]| ≤
√
E(X2)

√
E(Y 2).

Equality holds if and only if Y = aX for some constant a.

Solution 1.11. Notice that the statement is trivial if either X = 0 or Y = 0, so we consider the
non-trivial cases.

For any t ∈ R, we have
0 ≤ E[(tX − Y )2] = at2 − 2bt+ c

where a = E[X2], b = E[XY ] and c = E[Y 2]. A quadratic polynomial at2 − 2bt + c is non-negative if
and only if it has at most one root, which happens if the discriminant satisfies

D = 4b2 − 4ac ≤ 0 =⇒ b2 ≤ ac =⇒ |b| ≤
√
ac

so |E[XY ]| ≤
√
E[X2]

√
E[Y 2]. This proves the first part of the statement.

We now consider the equality case. Suppose now that we have equality |E[XY ]| =
√
E(X2)

√
E(Y 2),

so |b| =
√
ac. This implies that D = 0, so the quadratic polynomial has exactly one real root. Let

λ = b
a denote the value of this root, so

E[(λX − Y )2] = aλ2 − 2bλ+ c = 0.

We have that E[(λX−Y )2] = 0 if and only if λX−Y = 0 with probability one, so Y = λX = E[XY ]
E[X2]X

with probability 1. Therefore, if X 6= aY for any a, then Y 6= E[XY ]
E[X2]X so |E[XY ]| 6=

√
E(X2)

√
E(Y 2).

To prove the converse, suppose that X = aY . We have

|E[XY ]| = |a||E[Y 2]| =
√

E((aY )2)
√

E(Y 2) = |a|E[Y 2]

so equality holds.

Problem 1.12. Show that ρ = corr(X,Y ) satisfies |ρ| ≤ 1 and |ρ| = 1 if and only Y = aX + b for
some constants a and b.

Solution 1.12. By the Cauchy–Schwarz inequality, applied to X − E[X] and Y − E[Y ] we have

|Cov(X,Y )| = |E[(X−E[X])(Y −E[Y ])]| ≤
√

E[(X − E[X])2]
√

E[(Y − E[Y ])2] =
√

Var(X)
√

Var(Y ).

Rearranging terms implies that

|corr(X,Y )| = |Cov(X,Y )|√
Var(X)

√
Var(Y )

≤ 1.
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Next, we have that equality happens if and only if Y − E[Y ] = a(X − E[X]) for some constant a.
This means that there must be a linear relation between Y and X if equality were to hold. To see
that any linear relation achieves equality, suppose that Y = aX + b for some constants a and b, so by
bilinearity

|Cov(X,Y )| = |Cov(X, aX + b)| = |aCov(X,X) + bCov(X, 1))| = |a|Var(X)

and √
Var(Y ) =

√
Var(aX + b) = |a|

√
Var(X),

so
|corr(X,Y )| = 1.

Remark 7. We can repeat the second computation without the absolute values to conclude that
corr(X,Y ) = 1 implies that Y = aX + b for some constant a > 0 and corr(X,Y ) = −1 implies that
Y = aX + b for some constant a < 0

Problem 1.13. Prove the binlinearity property of covariances

Cov

[ n∑
i=1

aiXi,

n∑
i=1

biYi

]
=

n∑
i=1

m∑
j=1

aibjCov(Xi, Yj).

Solution 1.13. This is a direct consequence of linearity of expectation and the distributive property
of numbers

n∑
i=1

ai ×
m∑
j=1

bj =

n∑
i=1

m∑
j=1

aibj .

By the definition of the covariance,

Cov

[ n∑
i=1

aiXi,

n∑
i=1

biYi

]
= E

[( n∑
i=1

aiXi − E
[ n∑
i=1

aiXi

])( m∑
i=1

biYi − E
[ m∑
i=1

biYi

])]

linearity of expectation = E
[( n∑

i=1

ai(Xi − E[Xi])

)( m∑
i=1

bi(Yi − E[Yi])

)]

distributive property = E
[ n∑
i=1

m∑
i=1

aibi(Xi − E[Xi])(Yi − E[Yi])

]

linearity of expectation =

n∑
i=1

m∑
i=1

aibi E[(Xi − E[Xi])(Yi − E[Yi])] =

n∑
i=1

m∑
j=1

aibjCov(Xi, Yj).

Problem 1.14. Prove the formula for the variance of linear combinations of random variables,

Var

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2i Var(Xi) + 2
∑

1≤i<j≤n

aiajCov(Xi, Xj).
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Solution 1.14. Since Var(X) = Cov(X,X), the proof follows directly from the bilinearity of covari-
ance. We have

Var

(
n∑
i=1

aiXi

)
= Cov

[ n∑
i=1

aiXi,

n∑
i=1

aiXi

]

bilinearity =

n∑
i,j=1

aiajCov(Xi, Xj)

split into diagonal and offdiagonal =

n∑
i

a2iCov(Xi, Xi) +
∑
i 6=j

aiajCov(Xi, Xj)

Cov(X,Y ) = Cov(Y,X),Var(X) = Cov(X,X) =

n∑
i

a2i Var(Xi) + 2
∑
i<j

aiajCov(Xi, Xj).

Problem 1.15. (?) Let Xi ∼ N(µi, σ
2
i ), i = 1, 2, . . . , n be independent then,

n∑
i=1

(aiXi + bi) ∼ N

(
n∑
i=1

aiµi + bi,

n∑
i=1

a2iσ
2
i

)
.

Solution 1.15. The easiest proof of this fact uses moment generating functions, which will be ex-
plained a later week. In the meantime, we will present a geometric proof of this result using a
multidimensional change of variables. For simplicity, we consider the case that n = 2 and the means of
the random variables are 0 and ai = 1 and bi = 1. The general case can be recovered by an induction
argument and a standardization argument.

Let X1 ∼ N(0, σ1) and X2 ∼ N(0, σ2) be independent. We need to show that

X1 +X2 ∼ N(0, σ2
1 + σ2

2).

By standardization, X1 = σ1Z1 and X2 = σ2Z2. We want to find the PDF of

FX1+X2
(t) = P(σ1Z1 + σ2Z2 ≤ t) =

1

2π

∫∫
σ1z1+σ2z2≤t

e−
z21+z22

2 dz1dz2.

Using the change of variables corresponding to the rotation of the half plane to one perpendicular to
the z2 axis,

w1 =
σ1√

σ2
1 + σ2

2

z1 +
σ2√

σ2
1 + σ2

2

z2 w2 =
σ1√

σ2
1 + σ2

2

z1 −
σ2√

σ2
1 + σ2

2

z2

we have

{σ1z1 + σ2z2 ≤ t} =

{
w1 ≤

t√
σ2
1 + σ2

2

}
so

1

2π

∫∫
σ1z1+σ2z2≤t

e−
z21+z22

2 dz1dz2 =
1

2π

∫∫
w1≤ t√

σ21+σ22

e−
w2

1+w2
2

2 dw1dw2 =
1√
2π

∫ t√
σ1+σ2

−∞
e−

w2
1
2 dw1.

We conclude that

FX1+X2
(t) =

1√
2π

∫ t√
σ1+σ2

−∞
e−

w2
1
2 dw1 = P

(
Z ≤ t√

σ1 + σ2

)
= P(

√
σ1 + σ2Z ≤ t)

which is the CDF of a N(0, σ2
1 + σ2

2) random variable.
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Remark 8. Essentially we have exploited the rotational invariance of the standard normal. Notice
that the PDF is rotational symmetric since

fZ1,Z2
(z1, z2) =

1

2π
e−

z21+z22
2 =

1

2π
e−

r2

2 = fZ1,Z2
(r)

is a function of r =
√
z21 + z22 , which means that the density only depends on the distance from

points to the origin. The special change of variables rotated the half plane {σ1z1 + σ2z2 ≤ t} to be
perpendicular to the z2 axis to reduce the problem to computing the probability

√
σ2
1 + σ2

2Z ≤ t.

Problem 1.16. Let X1, . . . , Xn be independent and Xi ∼ N(µ, σ2) for all i = 1, . . . , n. Show that

X̄n =
1

n

n∑
i=1

Xi ∼ N
(
µ,
σ2

n

)
.

Solution 1.16. By the Gaussian stability, we have

X̄n =
1

n

n∑
i=1

Xi

is normally distributed. We just have to compute the mean and variance. By linearity,

E[X̄n] =
1

n

n∑
i=1

E[Xi] =
nµ

n
= µ.

and the variance of a linear combination (the covariance is 0 by independence) gives us

Var(X̄n) =

n∑
i=1

1

n2
Var(Xi) =

nσ2

n2
=
σ2

n
.

Remark 9. As n increases, the variance σ2/n decreases, so the distribution of X̄n becomes more
concentrated around µ. This is intuitive because if think of estimating the average of the midterm (or
any other event that is normally distributed), then asking 5 people gives us a less reliable result than
asking 50 people.

Problem 1.17. Show that

1. E[1A] = P(A)

2. Var(1A) = P(A)(1− P(A))

3. Cov(1A,1B) = P(A ∩B)− P(A)P(B)

Solution 1.17. The proof is somewhat straightforward, and it relies on the observation that

1A1B =

{
1 ω ∈ A ∩B,

0 ω ∈ (A ∩B)c

We can now compute the required objects
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1.
E(1A) = 1 · P(1A = 1) + 0 · P (1A = 0) = P(A)

2. We have 12
A = 1 if and only if ω ∈ A, so

E(12
A) = 1 · P(12

A = 1) + 0 · P(12
A = 0) = 1 · P(A) + 0 · P(Ac) = P(A)

so
Var(1A) = E(12

A)− E(1A)2 = P(A)− P(A)2 = P(A)(1− P(A))

3. Similarly, we have 1A1B = 1 if and only if ω ∈ A ∩B, so

E(1A · 1B) = 1 · P(1A1B = 1) + 0 · P(1A1B = 0) = 1 · P(A ∩B) + 0 · P((A ∩B)c) = P(A ∩B)

giving us
Cov(1A,1B) = E(1A · 1B)− E(1A)E(1B) = P(A ∩B)− P(A)P(B).
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