
April 5, 2024 STAT230 – Week 10 Justin Ko

1 Multivariate Distributions

1.1 Basic Terminology

1.1.1 Probability Mass Functions

We want to build a theory of probability for more than 1 variable. Suppose that X and Y are discrete
random variables defined on the same sample space. The probabilities of objects involving both X
and Y are encoded by the joint PMF.

Definition 1. The joint probability (mass) function of X and Y is

fX,Y (x, y) = P({ω ∈ S : X(ω) = x} ∩ {ω ∈ S : Y (ω) = y})

for x ∈ X(S), y ∈ Y (S) and 0 otherwise. As in the univariate case, a shorthand notation for this is

fX,Y (x, y) = P(X = x, Y = y).

The joint PMF is still a probability function in the sense that

1. 0 ≤ fX,Y (x, y) ≤ 1

2.
∑
x,y fX,Y (x, y) = 1.

The probabilities of only one random variable are encoded by the marginal PMF.

Definition 2. Suppose that X and Y are discrete random variables with joint probability function
fX,Y (x, y). The marginal probability mass function of X is

fX(x) = P(X = x) = P(X = x, Y ∈ Y (S)) =
∑

y∈Y (S)

f(x, y).

Similarly, the marginal distribution of Y is

fY (y) = P(Y = y) = P(X ∈ X(S), Y = y) =
∑

x∈X(S)

f(x, y).

Remark 1. The marginal probability mass functions are the same as the PMFs we encountered before.

1.1.2 Independence

Recall we say that events A and B are independent, if P(A ∩ B) = P(A) · P(B). In the context of
random variables, this is the same as

P(X = x, Y = y) = P(X = x)P(Y = y) ∀x, y.

Definition 3. X and Y are independent random variables if

fX,Y (x, y) = fX(x)fY (y)

for all values of (x, y).
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1.1.3 Conditional Distributions

Recall that for events A,B with P(B) 6= 0 we defined

P(A |B) =
P(A ∩B)

P(B)

In the context of random variables, this is the same as

P(X = x | Y = y) =
P(X = x, Y = y)

P(Y = y)
and P(Y = y |X = x) =

P(X = x, Y = y)

P(X = x)

Definition 4. The conditional probability mass function of X given Y = y is

fX | Y (x | y) =
f(x, y)

fY (y)
provided that fY (y) > 0.

Similarly, the conditional probability mass function of Y given X = x is

fY |X(y | x) =
f(x, y)

fX(x)
, provided that fX(x) > 0.

For each fixed y, the function fX(x | y) is the probability mass function of the random variable
X | Y = y and has the usual properties, such as summing to 1.

1.1.4 Expected Value

Definition 5. SupposeX and Y are discrete random variables with joint probability function fX,Y (x, y).
Then for any function g : R2 → R,

E [g(X,Y )] =
∑
(x,y)

g(x, y)fX,Y (x, y).

Properties:

1. Linearity of Expectation: If X and Y are any random variables, then

E[ag1(X,Y ) + bg2(X,Y )] = a · E[g1(X,Y )] + b · E[g2(X,Y )].

In particular, if X and Y are any random variables (not necessarily independent), then

E[X + Y ] = E[X] + E[Y ].

2. Product of two Independent Random Variables: If X and Y are independent, then

E[g1(X)g2(Y )] = E[g1(X)]E[g2(Y )].

In particular, if X and Y are independent, then

E[XY ] = E[X]E[Y ].
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1.2 Random Vectors

All the terminology above can be extended to a collection X1, X2, . . . , Xn of random variables in the
obvious way.

Definition 6. For a collection of n discrete random variables, X1, ..., Xn, the joint probability function
is defined as

fX1,...,Xn(x1, x2, ..., xn) = P(X1 = x1, X2 = x2, ..., Xn = xn).

and we call the vector (X1, . . . , Xn) a random vector.

Definition 7. X1, X2, . . . , Xn are independent if

fX1,...,Xn(x1, x2, . . . , xn) = fX1(x1)fX2(x2) · · · fXn(xn)

for all values of (x1, . . . , xn).

Definition 8. If g : Rn → R, and X1, ..., Xn are discrete random variables with joint probability
function fX1,...,Xn(x1, ..., xn), then

E [g(X1, ..., Xn)] =
∑

(x1,...,xn)

g(x1, ..., xn)fX1,...,Xn
(x1, ..., xn).

1.2.1 Functions of Random Vectors

We have the following formula for the probability mass function of U = g(X1, X2, . . . , Xn).

fU (u) = P(U = u) =
∑

(x1,...xn) such that
g(x1,...,xn)=u

fX1,...,Xn(x1, . . . , xn).

We now list some common functions of random variables (many we have already seen).

1. Sum of Independent Poisson is Poisson: If X ∼ Poi(λ1) and Y ∼ Poi(λ2) are independent,
then

T = X + Y ∼ Poi(λ1 + λ2).

2. Conditional Poisson is Binomial: Let X ∼ Poi(λ1) and Y ∼ Poi(λ2) be independent. Then,
given X + Y = n, X follows binomial distribution. That is,

X |X + Y = n ∼ Bin

(
n,

λ1
λ1 + λ2

)
.

Similarly, for Y , we have

Y |X + Y = n ∼ Bin

(
n,

λ2
λ1 + λ2

)
.

3. Sum of Independent Binomials is Binomial: If X ∼ Bin(n, p) and Y ∼ Bin(m, p) indepen-
dently, then

T = X + Y ∼ Bin(n+m, p).

4. Sum of Independent Bernouilli is Binomial: Let X1, X2, . . . , Xn be independent Bern(p)
random variables. Then,

T = X1 +X2 + . . .+Xn ∼ Bin(n, p).

5. Sum of Independent Geometric is Negative Binommial: Let X1, X2, . . . , Xk be indepen-
dent Geo(p) random variables. Then,

T = X1 +X2 + . . .+Xk ∼ NegBin(k, p).

Remark 2. Properties 3, 4, and 5 follow directly from the construction of these random variables.
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1.3 Important Multivariable Distributions

1.3.1 Mulitinomial Distribution

The multinomial distribution models the number of each outcome in multiple independent experiments
with k possible outcomes. The multivariate distribution is a generalization of the binomial distribution.

Definition 9. Consider an experiment in which:

1. Individual trials have k possible outcomes, and the probabilities of each individual outcome are
denoted pi, 1 ≤ i ≤ k, so that p1 + p2 + · · ·+ pk = 1.

2. Trials are independently repeated n times, with Xi denoting the number of times outcome i
occurred, so that X1 +X2 + · · ·+Xk = n.

We say that X1, ..., Xk has a Multinomial distribution with parameters n and p1, ..., pk, and is denoted
by

(X1, ..., Xk) ∼ Mult(n, p1, ..., pk).

� Joint PMF:

fX1,...,Xk
(x1, ..., xk) =

n!

x1!x2! · · ·xk!
px1
1 · · · p

xk

k ,

The terms n!
x1!x2!···xk!

=
(

n
x1,...,xk

)
are called multinomial coefficcients.

However, since we must have p1 +p2 + · · ·+pk = 1 and X1 +X2 + · · ·+Xk = n, the kth variable
is uniquely determined by the first k − 1 variables,

pk = 1− p1 − p2 − . . .− pk−1 and xk = n− x1 − x2 − . . .− xk−1

so the PMF is sometimes written as

fX1,...,Xk−1
(x1, ..., xk−1) =

n!

x1!x2! · · ·xk−1!(n−
∑k−1
i=1 xi)!

px1
1 · · · p

xk−1

k−1

(
1−

k−1∑
i=1

pi

)n−∑k−1
i=1 xi

Remark 3. Notice that when k = 2, then we have the PMF of the Binomial distribution.

� Marginal PMF: The number of times the outcome i occurred is

Xj ∼ Bin(n, pj), for j = 1, 2, . . . , k .

� Sum of Marginals: The number of times the outcomes i or j occurred is

Xi +Xj ∼ Bin(n, pi + pj), for i 6= j.

� Conditional PMF: The number of times i occured given that i and j occurred t times is

Xi |Xi +Xj = t ∼ Bin

(
t,

pi
pi + pj

)
, for i 6= j.

� Expected Values: The expected value of the outcomes are given by

E[XiXj ] = n(n− 1)pipj for i 6= j and E[Xi] = npi for i = 1, . . . , k

Example 1. The following experiments can be modeled by a multinomial distribution

Experiment X Distribution
Draw 10 cards from a deck with replacement # of each suit Mult(10, 14 ,

1
4 ,

1
4 ,

1
4 )

Roll a dice n times # of each roll Mult(n, 16 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 )
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1.4 Example Problems

1.4.1 Applications

Problem 1.1. Let X ∈ {1, 2, 3} and Y ∈ {1, 2}, and suppose that every outcome of (X,Y ) is equally
likely. What is the joint PMF for the vector (X,Y )?

Solution 1.1. We can compute all the probabilities one by one and encode the joint PMF of X and
Y in the table

x
fX,Y (x, y) 1 2 3 fY (y)
y 1 1/6 1/6 1/6 3/6

2 1/6 1/6 1/6 3/6
fX(x) 2/6 2/6 2/6 1

Problem 1.2. Suppose a fair coin is tossed 3 times. Define the random variables X = “number of
Heads”, and

Y =

{
1 Head occurs on the first toss,

0 Tail occurs on the first toss.

1. Find the joint PMF for (X,Y ).

2. Are X and Y independent?

3. What is the conditional distribution of X given Y ?

4. What is the probability that X + Y = 2?

Solution 1.2.

Part 1: We can compute all the probabilities one by one and encode the joint PMF of X and Y
in the table

x
fX,Y (x, y) 0 1 2 3 fY (y)
y 0 1/8 2/8 1/8 0 1/2

1 0 1/8 2/8 1/8 1/2
fX(x) 1/8 3/8 3/8 1/8 1

Part 2: We can see

fX,Y (0, 1) = 0 6= 1

8
· 1

2
= fX(0)fY (1)

which implies that X and Y are not independent (which makes perfect sense, as the number of heads
we have should depend on whether we had heads in the first toss).

Part 3: Using the formula fX | Y (x | y) = fX,Y (x, y)/fY (y) we find

x
0 1 2 3

fX | Y (x | y = 0) 2/8 4/8 2/8 0
fX | Y (x | y = 1) 0 2/8 4/8 2/8
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Part 4: We have X + Y = 2 if and only if X = 2, Y = 0 or X = 1, Y = 1. We can sum these terms
up in the joint PMF

P(X + Y = 2) = f(2, 0) + f(1, 1) + f(0, 2) =
1

8
+

1

8
=

1

4
.

Problem 1.3. Let X and Y be any discrete random variables. Show that

1. 0 ≤ fX,Y (x, y) ≤ 1

2. fX,Y (x, y) ≤ fX(x)

3. fX,Y (x, y) ≤ fY (y)

Solution 1.3.

1. We have fX,Y (x, y) = P(X = x, Y = y) and all probabilities must be between 0 and 1.

2. We have fX,Y (x, y) = P(X = x, Y = y) ≤ P(X = x) = fX(x) since {X = x, Y = y} ⊆ {X = x}.

3. We have fX,Y (x, y) = P(X = x, Y = y) ≤ P(Y = x) = fY (y) since {X = x, Y = y} ⊆ {Y = y}.

Problem 1.4. Suppose X and Y have joint PMF

fX,Y (x, y) =
1

6

(
1

2

)x(
2

3

)y
, x, y = 0, 1, 2...

Find the marginal PMFs fX and fY of X and Y .

Solution 1.4. Recall the identity

∞∑
k=0

qk =
1

1− q
, 0 < q < 1.

Part 1: The X marginal is

fX(x) =

∞∑
y=0

1

6

(
1

2

)x(
2

3

)y
=

1

6

(
1

2

)x ∞∑
y=0

(
2

3

)y
=

1

6

(
1

2

)x
1

1− 2
3

=
1

2

(
1

2

)x
, x = 0, 1, . . .

from which we conclude that X ∼ Geo(1/2).

Part 2: The Y marginal is

fY (x) =

∞∑
x=0

1

6

(
1

2

)x(
2

3

)y
=

1

6

(
2

3

)y ∞∑
x=0

(
1

2

)x
=

1

6

(
2

3

)y
1

1− 1
2

=
1

3

(
2

3

)y
, y = 0, 1, . . .

from which we conclude that Y ∼ Geo(1/3).
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Problem 1.5. Suppose X ∼ Poi(2), Y ∼ Poi(3), and that X and Y are independent. What is the
joint probability function of X and Y ?

Solution 1.5. By independence, we that for all integer valued x, y ≥ 0,

fX,Y (x, y) = fX(x)fY (y) = e−2
2x

x!
e−3

3y

y!
= e−5

2x

x!

3y

y!
.

Problem 1.6. If we roll a die n times, let’s denote by X1, . . . , X6 the number of times we rolled a 1,
2,. . . , 6.

1. What is the distribution (or marginal probability function) of Xj for j = 1, . . . , 6?

2. Are X1, X2, . . . , X6 independent?

3. What is the joint probability function of (X1, . . . , X6)?

4. Let’s denote by T = X1 + X2 the number of times we had a 1 or two. What’s the distribution
of T = X1 +X2?

Solution 1.6.

Part 1: By definition, if Xj denotes the number of times we roll a j in n rolls, then

Xj ∼ Bin(n,
1

6
).

Part 2: Intuitively, these are not independent because we must have X1 + · · · + X6 = n so X6 is
totally determined by X1 to X5. For example, if we consider the case

P(X1 = n,X2 = n, . . . ,X6 = n) = 0

but

P(X1 = n) · · ·P(X6 = n) =

(
1

6

n)6

> 0

so they are not independent.

Part 3: Let x1, . . . , x6 ∈ {1, . . . , n}. As noted earlier, if x1 + x2 + · · · + x6 6= n, then P(X1 =
x1, . . . , X6 = x6) = 0. Thus, let x1 + x2 + · · · + x6 = n. We can arrange the x1 rolls of 1, x2 rolls of
2,. . . , x6 of rolls of 6, among the n trials in

n!

x1!x2! . . . x6!

many ways, using the formula for the arrangements with repeated objects: the 1 is repeated x1 times,
the 2 is repeated x2 times, etc. Each of these arrangements has probability(

1

6

)x1

·
(

1

6

)x2

· · · · ·
(

1

6

)x6

=

(
1

6

)x1+···+x6

=

(
1

6

)n
Hence, the joint PMF of (X1, . . . , X6) is

fX1,...,X6
(x1, . . . , x6) =

{
n!

x1!x2!...x6!

(
1
6

)n
, if x1 + x2 + · · ·+ x6 = n,

0 otherwise.
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Part 4: T counts the number of 1’s and 2’s after n rolls. The probability of rolling a 1 or 2 is
1
3 , so

T ∼ Bin(n,
1

3
).

Remark 4. We could have used the fact that (X1, . . . , X6) ∼ Mult(n, 16 , . . . ,
1
6 ) and used the properties

of the multinomial to derive all of the above parts.

Problem 1.7. Consider drawing 5 cards from a standard 52 card deck of playing cards (4 suits, 13
kinds) with replacement. What is the probability that 2 of the drawn cards are hearts, 2 are spades,
and 1 is a diamond?

Solution 1.7. Denote by H,S,D,C the number of Hearts, Spades, Diamonds, and Clubs. Then

(H,S,D,C) ∼ Mult(5, 0.25, 0.25, 0.25, 0.25)

and

P(H = 2, S = 2, D = 1, C = 0) =
5!

2!2!1!0!

(
1

4

)4

Problem 1.8. In the game of Roulette, a small ball is spun around a wheel in such a way so that the
probability it lands in a black or red box is 18/38 each, and the probability it lands in a green box is
2/38. Suppose 10 games are played, and let B, R and G denote the number of times the ball landed
on black, red, and green, respectively.

� Write down the probability function of (B,R,G) along with all its constraints.

� Given that B = 5, calculate the probability that R = 5.

Solution 1.8.

Part 1: We know (B,R,G) ∼ Mult(10, 18/38, 18/38, 2/38) so

P(B = b, R = r,G = g) =
10!

b!r!g!

(
18

38

)b+r (
2

38

)g
,

when b, r, g ∈ {0, 1, . . . , 10} with b+ r + g = 10 and 0 otherwise.

Part 2: By definition of conditional probability, and using that marginally B ∼ Bin(10, 18/38),
we find

P(R = 5 | B = 5) =
P(R = 5, B = 5)

P(B = 5)
=

P(R = 5, B = 5, G = 0)

P(B = 5)

=
10!
5!5!

(
18
38

)10
10!
5!5!

(
18
38

)5 ( 20
38

)5 =

(
18

20

)5

≈ 0.59049

Problem 1.9. We can model n rounds of fair, independent rock-paper-scissors game using multino-
mial distribution:

(R,P,C) ∼ Mult(n, 1/3, 1/3, 1/3).

Suppose that I play 5 games of R-P-S. Given that the sum of Rocks and Papers is 4, what would be
the distribution of the number of Rocks I played?
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Solution 1.9. Using the conditional probability formula for the multinomial with with n = 5, pj =
1/3 for j = 1, 2, 3 and t = 4, we find

R | R+ P = 4 ∼ Bin

(
4,

1/3

1/3 + 1/3

)
= Bin

(
4,

1

2

)
1.4.2 Proofs and Derivations

Problem 1.10. If X and Y are any random variables, show that

E[ag1(X,Y ) + bg2(X,Y )] = a · E[g1(X,Y )] + b · E[g2(X,Y )].

In particular, if g1 = x and g2 = y then

E[X + Y ] = E[X] + E[Y ].

Solution 1.10. We have by the definition,

E[ag1(X,Y ) + bg2(X,Y )] =
∑
(x,y)

[ag1(x, y) + bg2(x, y)]fX,Y (x, y)

= a
∑
(x,y)

g1(x, y)fX,Y (x, y) + b
∑
(x,y)

g2(x, y)fX,Y (x, y)

= a · E[g1(X,Y )] + b · E[g2(X,Y )].

By taking g1(x, y) = x and g2(x, y) = y we immediately arrive at the fact that

E[X + Y ] = E[X] + E[Y ].

Remark 5. We have by the definition of the marginal PMF

E[X] =
∑
(x,y)

xfX,Y (x, y) =
∑
x

∑
y

xfX,Y (x, y) =
∑
x

x
∑
y

fX,Y (x, y) =
∑
x

xfX(x)

so E[X] coincides with the expected value for single random variables we saw before.

Problem 1.11. If X and Y are independent random variables, show that

E[g1(X)g2(Y )] = E[g1(X)]E[g2(Y )].

In particular, if g1 = x and g2 = y then

E[XY ] = E[X]E[Y ].

Solution 1.11. Since fX,Y (x, y) = fX(x)fY (y) by independence, we have by the definition of the
expected value,

E[g1(X)g2(Y )] =
∑
(x,y)

(g1(x)g2(y))fX,Y (x, y)

independence =
∑
(x,y)

g1(x)g2(y)fX(x)fY (y)

=

(∑
x

g1(x)fX(x)

)(∑
y

g2(y)fY (y)

)
= E[X]E[Y ].

By taking g1(x) = x and g2(y) = y we immediately arrive at the fact that

E[XY ] = E[X]E[Y ].
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Problem 1.12. If X ∼ Poi(λ1) and Y ∼ Poi(λ2) are independent, show that

T = X + Y ∼ Poi(λ1 + λ2).

Solution 1.12. We have X + Y = n if and only if X = m and Y = n − m for m = 0, 1, . . . , n.
Therefore,

fT (n) = P(X + Y = n) =
∑

(x,y):x+y=n

P(X = x, Y = y)

=

n∑
m=0

P(X = m,Y = n−m)

independence =

n∑
m=0

P(X = m)P(Y = n−m)

=

n∑
m=0

e−λ1
λm1
m!

e−λ2
λn−m2

(n−m)!

=
e−(λ1+λ2)

n!

n∑
m=0

n!

m!(n−m)!
λm1 λ

n−m
2

Binomial thm =
e−(λ1+λ2)

n!
(λ1 + λ2)n.

Problem 1.13. Let X ∼ Poi(λ1) and Y ∼ Poi(λ2) be independent. Show that

X |X + Y = n ∼ Bin

(
n,

λ1
λ1 + λ2

)
.

Similarly, for Y , we have

Y |X + Y = n ∼ Bin

(
n,

λ2
λ1 + λ2

)

Solution 1.13. Since X + Y ∼ Poi(λ1 + λ2), we have

fX |X+Y =
fX,X+Y (x, n)

fX+Y (n)
=

P(X = x,X + Y = n)

P(X + Y = n)

independence =
P(X = x)P(Y = n− x)

P(X + Y = n)

=
e−λ1 λ

x
1

x! e
−λ2 λn−x

2

(n−x)!

e−(λ1+λ2) (λ1+λ2)n

n!

=
n!

x!(n− x)!

(
λ1

λ1 + λ2

)x(
λ2

λ1 + λ2

)n−x
which we recognize as the PMF of a Bin

(
n, λ1

λ1+λ2

)
random variable. The proof for the Y given

X + Y = n is identical.

Problem 1.14. If (X1, . . . , Xn) ∼ Mult(n, p1, . . . , pn), show that
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1.
Xj ∼ Bin(n, pj), for j = 1, 2, . . . , k .

2.
Xi +Xj ∼ Bin(n, pi + pj), for i 6= j.

3.

Xi |Xi +Xj = t ∼ Bin

(
t,

pi
pi + pj

)
, for i 6= j.

4.
E[XiXj ] = n(n− 1)pipj for i 6= j.

Solution 1.14.

Part 1: By definition, Xj denotes the number of occurrences of outcome j in n trials and each
occurence has probability pj of happening so

Xj ∼ Bin(n, pj), for j = 1, 2, . . . , k .

Part 2: By definition, Xi + Xj denotes the number of occurrences of outcome i or j in n trials and
the probability of either i or j happening is pi + pj so

Xi +Xj ∼ Bin(n, pi + pj), for i 6= j.

Part 3: Notice that if Xi+Xj = t, then Xi takes values in {0, 1, . . . , t}. Therefore, for x ∈ {0, 1, . . . , t}
we have

fXi|Xi+Xj
=

P(Xi = x)

P(Xi +Xj = t)
=

P(Xi = x,Xj = t− x)

P(Xi +Xj = t)
=

P(Xi = x,Xj = t− x,
∑
k 6=i,j Xk = n− t)

P(Xi +Xj = t)

since the total of all outcomes must be n. From the second part, we know that Xi+Xj ∼ Bin(n, pi+pj)

fXi|Xi+Xj
=

n!
x!(t−x)!(n−t)!p

x
i p
t−x
j (1− pi − pj)n−t

n!
t!(n−t)! (pi + pj)t(1− pi − pj)n−t

=
t!

x!(t− x)!

(
pi

pi + pj

)x(
pj

pi + pj

)t−x
which we recognize as the PMF of a Bin

(
t, pi
pi+pj

)
random variable.

Remark 6. This result is intuitive. Since we are given that Xj +Xj = t we know that we have t total
occurrences of Xi and Xj . We have that

P(i happens | i or j happens) =
P(i happens)

P(i or j happens)
=

pi
pi + pj

.

Therefore, the number of times i happens given that i or j happens at total of t times is Bin
(
t, pi
pi+pj

)
Part 4: We need to compute (noting that xi + xj ≤ n needs to hold):

E[XiXj ] =
∑

xi≥0,xj≥0
xi+xj≤n

xi · xj ·
n!

xi!xj !(n− xi − xj)!
pxi
i p

xj

j (1− pi − pj)n−xi−xj

=
∑

xi≥1,xj≥1
xi+xj≤n

xi · xj ·
n!

xi!xj !(n− xi − xj)!
pxi
i p

xj

j (1− pi − pj)n−xi−xj

=
∑

xi≥1,xj≥1
xi+xj≤n

n!

(xi − 1)!(xj − 1)!(n− xi − xj)!
pxi
i p

xj

j (1− pi − pj)n−xi−xj
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Like in the computation of the expected value of a binomial, we factor out terms to make the summation
look like the sum of a PMF,

= n(n− 1)pipj
∑

xi−1≥0,xj−1≥0
xi−1+xj−1≤n−2

(n− 2)!× pxi−1
i p

xj−1
j (1− pi − pj)n−2−(xi−1)−(xj−1)

(xi − 1)!(xj − 1)!(n− 2− (xi − 1)− (xj − 1))!

= n(n− 1)pipj
∑

yi≥0,yj≥0
yi+yj≤n−2

(n− 2)!

(yi)!(yj)!(n− 2− yi − yj)!
pyii p

yj
j (1− pi − pj)n−2−yi−yj

︸ ︷︷ ︸
=1 Sum of PMF of Mult(n− 2, pi, pj , 1− pi − pj)

= n(n− 1)pipj

where we used the change of variables yi = xi − 1, yj = xj − 1.

Alternative Proof: We can compute the expected value using linearity of expectation. We can
write Xi =

∑n
k=1 1Ak

where Ak is the event that outcome i occured on the kth trial, and

1Ak
=

{
1 Ak happens

0 Ak does not happens.

Similarly, Xj =
∑n
`=1 1B`

where B` is the event that outcome j occured on the `th trial, and

1B`
=

{
1 B` happens

0 B` does not happens.

Therefore,

E[XiXj ] = E

[
n∑
k=1

1Ak

n∑
`=1

1B`

]
=

n∑
k,`=1

E [1Ak
1B`

] .

We have two cases

1. k = ` : Suppose that k = `. Since 1(Ak)1(Bk) = 1 if an only if Ak and Bk happen, we have

E[1Ak
1B`

] = E[1Ak
1Bk

] = P(Ak ∩Bk) = 0

since both outcome i and j can’t happen at the same time.

2. k 6= ` : Suppose that k 6= `. Since 1Ak
1B`

= 1 if an only if Ak and B` happens

E[1Ak
1B`

] = P(Ak ∩B`) = P(Ak)P(B`) = pipj

since the trials are independent, so the outcomes Ak and B` are independent (they refer to
different trials).

Since there are n(n− 1) ways to pick indices k 6= `, we have

E[XiXj ] =

n∑
k,`=1

E [1Ak
1B`

] = n(n− 1)E [1A1
1B2

] = n(n− 1)pipj .
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