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Abstract. We develop a pseudo-likelihood theory for rank one matrix estimation problems in
the high dimensional limit. We prove a variational principle for the limiting pseudo-likelihood’s
value, and show it is universal, depending only on four information parameters determined by
the corresponding null model. Through this universality we establish equivalence for estimation
problems, and in particular relate recovery in spiked matrix models with the community detection
problem. We further give a complete description of the performance of the least-squares estimator
for any rank one recovery problem.

1. Introduction

Suppose that we are given data in the form of a real, symmetric N × N matrix, Y ∈ RN×N ,
whose entries are conditionally independent given an unknown vector x0 ∈ ΩN ⊆ RN and where
each entry of Y has conditional law

Yij ∼ PY

(
· | λ√

N
x0

ix
0
j

)
for i ≤ j ,

for some λ > 0, and Ω ⊆ R is compact.1 Our goal is to infer x0.
High-dimensional rank one estimation tasks with structure form one of the central classes of

problems in high-dimensional statistics. This data model captures a broad range of problems
that have received a tremendous amount of attention in recent years, such as Sparse PCA [83], Z2
Synchronization [48], submatrix localization [13, 38], matrix factorization [50], community detection
[53], biclustering [59], and non-linear spiked matrix models [69] among many others.

From a statistical perspective, a substantial literature on these problems has emerged over
the past decade, particularly from the perspective of hypothesis testing and Bayesian inference.
The fundamental limits of hypothesis testing have been explored in [5]. The fundamental lim-
its of Bayesian inference, specifically computing the mutual information of and characterizing
the performance for the (matrix) minimum mean-squared error estimator, has been explored in
[55, 58, 75, 20, 19, 25]. More generally, the setting of “mismatched” Bayesian inference was devel-
oped in [15, 8, 10, 73, 33, 37]. From an algorithmic perspective, various algorithms (along with
performance guarantees) for specific problems and estimators—including the MMSE—have been
introduced in recent years using the frameworks of Approximate Message Passing [27, 74, 24, 56],
Spectral methods [70, 61], Semi-definite programs [79, 80, 49], Low-degree methods [63], and the
sum-of-squares hierarchy [42, 41].

A natural question is to understanding the statistical performance of more general optimization
based procedures, such as maximum likelihood estmation (MLE), maximum a posteriori (MAP)
estimation, or best low rank approximations. The literature for these methods, however, is far
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1The scaling assumption here in N matches the regime where non-trivial high-dimensional effects, such as the

BBP phase transition, occur. It guarantees that both the operator norm of Y and 1√
N

(x0)(x0)⊺ are of the same
order.
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more sparse. To our knowledge, to date, there have been a sharp understanding only the case of
the MLE in Sparse PCA [44] as well as variational inference for Z2-synchronization [30, 17].

We seek here to close this gap. To this end, observe that many popular optimization based esti-
mators for such problems, such as those mentioned above, can be interpreted as pseudo-likelihood
methods [34]. In this paper, we provide a unified analysis of the performance of pseudo-likelihood
methods.

We develop a pseudo maximum likelihood theory for rank one inference tasks in the high-
dimensional regime for when the latent vector, x0, is structured. We provide exact variational
formulas for the asymptotic pseudo-likelihood and, as a direct consequence, obtain exact varia-
tional characterizations for the performance of the corresponding estimators. See Section 2.

We find that these problem exhibit “universal” behaviour in that these variational characteri-
zations depend only on four scalar quantities, which we call the information parameters. These
parameters encode certain Fisher-type information of the pseudolikelihood with respect to a “null”
model and are reminiscent of the score parameters appearing in the classical regime [32].

Surprisingly, we find that if one of these information parameters, which we call the score pa-
rameter, is not zero, then it entirely dictates the effectiveness of our inference method, and the
effect is typically catastrophic. We refer to such models as ill-scored models. We present here a
data-driven approach to systematically correct for this effect and obtain a corresponding variational
characterization for the performance of this score-corrected method. See Section 2.7.

Since a given inference tasks is entirely characterized by its information parameters, our analysis
yields two general notions of equivalence of inference tasks, called strong and coarse equivalence.
For example, we give a precise sense in which the problem of maximum likelihood estimation for
certain spiked matrix models and the stochastic block model are equivalent. See Section 3.

We then illustrate our results with a broad range of examples. First, we present a complete
analysis of the performance of the popular “Best rank 1 approximation” procedure [28]. We also
provide a method to correct for some of these issues, by introducing the score-corrected least squares
procedure. Surprisingly, however, we find that in natural problems, such as a sparse Rademacher
matrices, the best rank one approximation and its score-corrected version are necessarily com-
pletely uninformative. Indeed, we provide a sufficient condition for the failure of such methods.
Finally in Section 5, we illustrate how our approach can be used to analyze a broad range of
problems and methods. Specifically, we study popular inference methods for spiked matrix mod-
els, Z2-synchronization, the Stochastic Block Model, sparse rademacher matrices, and non-linear
transformations of spiked matrix models.

Let us pause here to discuss the technical tools involved in our work and how they compare
to the above mentioned literature. Since the latent vector is structured, standard tools of high-
dimensional statistics, such as concentration of measure or random matrix theory, are unable to
yield a sharp understanding of these problems. To circumvent this, the recent progress in the past
decade has used deep connections to statistical physics, specifically to the theory of spin glasses. In
particular, the central insight is that Hypothesis Testing and Bayesian inference of matrix models
are deeply connected to the Sherrington-Kirkpatrick model [78, 68, 81, 64] (and its relatives) in a
special regime called the “Nishimori Line” as a consequence of Bayes theorem [43].

With this in mind, it is natural that optimization-based procedures have been less understood: on
the “Nishimori line” the corresponding spin glass model is in the so-called “replica symmetric phase”.
While deeply challenging, this regime is comparatively simpler to understand as the corresponding
variational problems reduce to optimizing functions of one real variable [55, 9]. To understand
more general optimization methods, such as maximum likelihood estimation, one must the recently
developed tool, called the method of annealing to understand the “zero-temperature” asymptotics of
spin glasses [7, 47]. Here the corresponding model enters the so-called “replica symmetry breaking”
phase and can exhibit deep and nontrivial structure [22, 82, 64].
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The key technical insight is that one can view pseudolikelihood inference as a “zero temperature”
asymptotic of mis-matched Bayesian inference. We can then combine the recent analysis of such
problems developed by one of us and co-authors in [37] with the Γ-convergence based “method
of annealing” approach developed by one of us and co authors in [45]. The combination of these
works is non-trivial and several new techniques were utilized. To deal with ill-scored models we
generalize the universality result of [37] and remove the simplifying assumption [37, Hypothesis 2.3]
(see Appendix A) and prove the analogous universality statement for pseudo maximum likelihood
estimation (see Appendix B). Ill-scored models introduce an additional mean parameter that has
to be controlled, so we use the techniques developed in [37] and prove a generalized variational
formula for ill-scored models. We also proved new regularity results for the variational formulas
with respect to general reference measures, extending the results in [12], which were previously only
done for the uniform measure on {±1} (see Appendix D and Appendix E). Lastly, we extended the
work of [45] to allow for random initial conditions (See Appendix C).

2. Variational Characterization for Pseudo-Likelihood Estimation

2.1. Data model and assumptions. Suppose that we are given data in the form of a real,
symmetric N ×N matrix Y ∈ RN×N , whose upper entries are conditionally independent given an
unknown vector x0,N ∈ ΩN

0 ⊆ RN with law

Yij ∼ PY (·| 1√
N
x0,N

i x0,N
j ) for i ≤ j , (2.1)

for some λ > 0. Here Ω0 ⊆ R is a compact set. Our goal is to infer x0,N .
We will assume throughout that the laws of Yij are jointly absolutely continuous with respect to

either Lebesgue measure on RN×N or a product of counting measures on Ω0, so that the conditional
densities are well-defined. In the following, we denote to the underling Lebesgue or counting measure
by dy. (The meaning of notation will be clear from context.) We denote the log-likelihood of a
single coordinate as g0(y, w), i.e.,

g0(y, w) = logPY (Y = y | w) ,

and the log-likelihood of Y given x ∈ RN is

Lg0
N (Y,x) =

∑
i≤j

g0
(
Yij ,

xixj√
N

)
.

We will further assume that there is a null model whose likelihood we denote by g0(y, 0), and we
denote the corresponding null measure by P0. The null model corresponds to the case x0,N = 0.
Under the assumptions above a maximum likelihood estimator is defined as:

x̂MLE = arg max
x∈ΩN

0

Lg0
N (Y, x) .

Note that, at this level of generality, this estimator may not be uniquely defined.
We are also interested in understanding the pseudo-likelihood. Here we allow for misspecification

of both the likelihood function and the support of the unknown vector Ω0. In this case we denote
the pseudo-likelihood by g and the parameter set by Ω. Throughout we shall denote our pseudo
maximum likelihood estimator by x̂PMLE, and it is given by:

x̂PMLE := arg max
x∈ΩN

∑
i≤j

g
(
Yij ,

xixj√
N

)
, (2.2)
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which again may not be uniquely defined. We measure the performance of the estimator by its
cosine similarity with the unknown vector, that is:

lim
N→∞

CS(x̂,x0) where CS(x, y) := x · y
∥x∥ ∥y∥

, (2.3)

and its squared norm.
In order to develop a high-dimensional theory, we need certain basic assumptions on the data

distribution, and the unknown vector. Note that as Ω0 is compact, for any sequence x0,N , the
sequence of empirical measures

µx0,N = 1
N

∑
i

δ
x0,N

i
,

is always tight.

Definition 2.1. We say that a sequence xN ∈ ΩN
0 is tame if µx0,N → Q weakly for some probability

measure Q.

We work under the assumption that x0,N is tame. This assumption is common in the high-
dimensional statistics literature (see, e.g., [27, 29, 71]). Next we need some basic regularity as-
sumptions on the (pseudo)-likelihood. To this end, we need the following function class

Definition 2.2. Let F0(dy) denote the set of pairs of functions, (f1(y, w), f2(y, w)), with common
domain R × U ⊆ R2, where U is an open neighborhood of 0, that are three times continuously
differentiable in w for every y and satisfy the following four conditions:∫

Ω0
exp(fi(y, 0))dy,

∫
Ω0

[|∂wfi(y, 0)|4] exp(f1(y, 0))dy,

∥∂2
wfi(·, 0)∥∞, ∥∂3

wfi(·, ·)∥∞ < ∞.

(2.4)

for each i = 1, 2.

(F0 in principle depends on the choice of U , whose choice is problem dependent. We suppress this
dependence for the sake of exposition.) We will assume throughout the following that the pair of
the likelihood, g0, and pseudo-likelihood g are in this class, (g0, g) ∈ F0(dy). Since the pair (g0, g)
completely specify the underlying inference problem, we refer to this pair as an inference task.

2.2. Information parameters. One of our central results is that the performance of the (pseudo)-
likelihood estimator in problems of this class is entirely determined by the information parameters
of the pair (g0, g), which are defined as follows

Definition 2.3. The information parameters of an inference task (g0, g) are

β1(g0, g) = EP0

[
(∂wg(Y, 0) − E0[∂wg(Y, 0)])2] (2.5)

β2(g0, g) = EP0

[
∂wg(Y, 0)∂wg0(Y, 0)

]
(2.6)

β3(g0, g) = −EP0

[
∂2

wg(Y, 0)
]

(2.7)
β4 = EP0

[
∂wg(Y, 0)

]
. (2.8)

The information parameters measure the effect of the misspecification on the null model. Observe
that when g = g0, if we denote the null Fisher information by

β∗ = EP0

[
(∂wg0(Y, 0))2], (2.9)

then by standard properties of score functions [77, Chapter 2.3], the information parameters satisfy
the Rao relation

β∗ = β1 = β2 = β3.
4



2.3. Well-scored v.s. ill-scored psuedolikelihoods. A classical fact is that the expected score
of g0 is 0. As we are allowing for the case that g ̸= g0, however, this identity may no longer hold.
As we shall see below, the failure of this identity has substantial repercussions for inference. To
this end, it helps to introduce the following criterion.

Definition 2.4 (well-scored pseudo-likelihood). We say that a pseudo-likelihood function g(y, w)
is well-scored if its score satisfies

β4 = EP0

[
∂wg(Y, 0)

]
= 0. (2.10)

Otherwise we call it ill-scored.

The case of well-scored models represents an ideal case for pseudo-maximum likelihood theory.
On the contrary, in the ill-scored setting, the pseudo-maximum likelihood is heavily influenced by
the sign of the score parameter, β4, and can lead to complete failure of pseudo maximum likelihood
estimation (see Section 2.6).

2.4. Variational characterization of performance for well-scored PMLEs (and MLEs).
We are now in the position to state our main results. We begin by discussing the case of well-
scored models. Our first main result is a variational formula for the asymptotic pseudo-maximum
likelihood and corresponding characterization of the asymptotic performance of pseudo-maximum
likelihood estimators.

To this end, we need to define a corresponding Parisi-type functional. Let M([0, S]) denote
the space of non-negative, finite measures on [0, S] equipped with the weak-* topology, and let
AS ⊆ M([0, S]) be the subset

AS = {ν ∈ M([0, S]) : m(s)ds+ cδS ,m(s) ≥ 0 non-decreasing}.

For each γ = mds + cδS ∈ AS , let Φγ,λ,µ(t, y) denote the weak solution to the Hamilton-Jacobi-
Bellman equation,

∂tΦγ,λ,µ = −β2
1
4

[
∂2

yΦγ,λ,µ +m(t)(∂yΦγ,λ,µ)2
]

(t, y) ∈ [0, S] × R

Φγ,λ,µ(S, y) = maxx∈Ω

(
yx+ λxx0 +

(
µ+ β2

1
2 c
)
x2
)

y ∈ R

For the notion of weak solution for partial differential equations (PDEs) of this type see, e.g., [46]
and for the existence, uniqueness and regularity of weak solutions to this PDE see [45, Appendix
A].

Let us now define the functional ψβ̄ which will characterize the maximum of the asymptotic
pseudo-likeihood when restricted to parameters with a prescribed cosine similarity, M and squared
norm, S.

ψβ(S,M) = inf
µ,λ

inf
γ

(
EQ[Φλ,µ,γ(0, 0)] − β2

1
2

∫ S

0
tdγ(t) − µS − λM + β2M

2

2 − β3S
2

4

)
. (2.11)

Observe that ψβ is well-defined on [0, (max Ω)2] × [min Ω,max Ω] and upper semicontinuous C.2
there, though it may take the value −∞. The (effective) domain of ψβ is the set

C = ∩ρ,τ∈[−1,1]2{(S,M) : Ex0∼Q[ inf
x∈Ω

{ρx2 + τxx0}] ≤ ρS+ τM ≤ Ex0∼Q[sup
x∈Ω

{ρx2 + τxx0}]}. (2.12)

Observe that the set C is convex and compact and depends implicitly on Q. Let Cβ denote the set
of maximizers of ψβ over C, that is

Cβ = argmax
(S,M)∈C

ψβ(S,M). (2.13)
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Finally, let MN (x) and SN (x) be

MN (x) = 1
N

x · x0,N and SN (x) = 1
N

∥x∥2

Observe that CS(x,x0,N ) = MN (x)/
√
SN (x)SN (x0,N ), and under the assumption that x0,N is

tame, that SN (x0,N ) → EQ[x2
0]. With this in hand, we can now state our main technical result.

Theorem 2.1. Suppose that x0,N is tame and that g is a well-scored pseudo-likelihood. The max-
imum pseudo-likelihood satisfies

1
N

[
max
x∈ΩN

Lg
N (Y, x) −

∑
i≤j

g(Yij , 0)
]

→ sup
(S,M)∈C

ψβ̄(S,M) a.s. (2.14)

Furthermore, for any sequence of choices of x̂N
PMLE, the corresponding sequence of overlaps

(SN (x̂PMLE),MN (x̂PMLE)) ,
is tight, with limit points contained in Cβ.

To better interpret Theorem 2.1, it helps to observe that ψβ and Cβ have an intrinsic statistical
meaning. ψβ is the maximum of the pseudolikelihood when restrcited to that set of overlaps and
squared norms and Cβ is the set of overlaps and norms of near maxima of the (normalized) pseudo
likelihood. To make this precise, let ΩN

ε (S,M) = {x ∈ ΩN : |MN (x) −M | ≤ ε, |SN (x) − S| ≤ ε}
Lg,ε

N (S,M) = max
x∈ΩN

ε (S,M)
Lg

N (Y, x).

We then have the following.

Theorem 2.2. For every (S,M) ∈ C, we have that

lim
ε→0

lim
N→∞

1
N

[
Lg,ε

N (S,M) −
∑
i≤j

g(Yij , 0)
]

= ψβ(S,M)

almost surely.

Observe that in the above, we do not guarantee the convergence of cosine similarity. This is
because, in some settings, Cβ may contain several points. This is due to the existence of many near
maximizers of the pseudo MLE. It is natural to ask under which regimes one has true convergence.
A sufficient condition is if Cβ consists of at most two points.

Assumption 1. Suppose that β̄ is such that Cβ̄ consists of at most two points. Furthermore, the
coordinate associated with the m parameter is unique up to a sign.

Corollary 2.1. Suppose that β̄ satisfies Assumption 1, then for any sequence of pseudo-likelihood
estimators, (SN (x̂N

PMLE), |MN (x̂N
PMLE)|) → (s,m) almost surely. In particular, the absolute cosine

similarity converges almost surely to m/
√
sEQx

2
0

We note here the following remark regarding the centreing in (2.14).

Remark 2.1. The term
∑

i≤j g(Y, 0) does not depend on x, so it will not affect the pseudo-
maximum likelihood estimator. However, these normalization terms need to be subtracted off for
the PMLE to have a well-defined limit. For example, with data Y ∼ G + xx⊺

√
N

the likelihood,

1
N

Lg0
N (Y, x) = 1

N

∑
ij

−1
2G

2
ij +

x0
ix

0
jxixj

N
−
x2

ix
2
j

2N

diverges because 1
N

∑
ij g0(Y, 0) = 1

N

∑
ij

1
2G

2
ij .
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2.5. Behavior of Ill-scored pseudolikelihoods. Before turning to our variational characteri-
zation in the case of ill-scored models, let us pause here for a discussion of the key issue in this
setting. Suppose that

β4 = EP0 [∂wg(Y, 0)] = C ̸= 0 .
When β4 ̸= 0, the leading order behaviour of the pseudo-likelihood is dominated by the empirical
mean of the parameter. Roughly speaking, in this regime one has the expansion

max
x∈ΩN

Lg
N (Y, x) = N3/2C max

x∈ΩN

( 1
N

N∑
i=1

xi

)2
+ o

(
N3/2

)
.

Note that the leading order term here does not depend on the unknown parameter, x0, and is an
order of magnitude larger than in the well-scored setting (c.f. Example 2.1 and Lemma 6.1).

This has catastrophic consequences on inference which are best illustrated by way of example.
Example 2.1. Consider the data matrix generated from a spiked Gaussian matrix with non-zero
mean in the null model,

Yij ∼ N
(
C +

x0
ix

0
j√
N
, 1
)
.

To infer x0, we take a irregular psudeo likelihood from a centered Gaussian likelihood,

g(y, w) = −1
2(y − w)2,

which represents a large misspecification of an order 1 parameter of the data model. It follows that
β4 = EP0 [∂wg(Y, 0)] = EP0 [Y ] = C.

When C > 0, then the data distribution Y has a large positive eigenvalue of order N while the
positive eigenvalue of the spike we want to infer x0

i x0
j√

N
is of order

√
N . Conversely, C < 0, then the

data distribution Y has a large negative eigenvalue of order N while the positive eigenvalue of the
spike we want to infer x0

i x0
j√

N
is of order

√
N . In either case, there is large but spurious shift in the

likelihood that obscures the parameter we want to infer.
In the following sections, we begin by first stating the variational formula in the case of ill-scored

pseudolikelihoods. Importantly, however, the statistician does not, a priori, have access to the
underlingly null distribution P0. As such it is important to understand whether or not it is possible
to determine if one is in the ill-scored scenario and, in particular, if it is possible to systematically
correct for this effect. We present such an approach in the subsequent section.

2.6. Variational Formula for Ill-scored pseudolikelihood. We now state an extension of
Theorem 2.1 to these ill-scored models. Due to the importance of the sign of β4, the results will be
separated into cases. We begin with the case of β4 > 0.
Theorem 2.3 (Positive β4). Suppose that x0 is tame and β4 > 0. Let

x̃+ = sup Ω x̃− = inf Ω
denote the respective largest point and smallest points in our parameter space. Let

x+ =
{
x̃+ if |x̃+| ≥ |x̃−|
x̃− if |x̃+| < |x̃−|

We have x̂PMLE = x+1 is a constant vector, so the set of limit points of SN (x̂P MLE) and MN (x̂PMLE)
is unique and given by Cβ̄ = {(x2

+, x+EQ(x0))}. In particular,

CS(x̂PMLE,x0) → EQ(x0)
(EQ(x0)2)1/2
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1
N

∥x̂P MLE∥2 → x2
+.

Evidently if x̄0 = 0 then CS(x̂PMLE,x0) = 0 and the estimator is useless.
The case when β4 < 0 is more delicate since there is the large spurious information induced by

the misspecification is, in some sense, in the opposite direction of the vector we want to infer.
We have the following formula for the restricted ground state. Let

∂tΦγ,λ,µ,ρ = −β2
1
4

[
∂2

yΦγ,λ,µ,ρ +m(t)(∂yΦγ,λ,µ,ρ)2
]

(t, y) ∈ [0, S] × R

Φγ,λ,µ,ρ(S, y) = maxx∈Ω

(
yx+ λxx0 +

(
µ+ β2

1
2 c
)
x2 + ρx

)
y ∈ R

and using a slight abuse of notation, we define

ψβ̄,−(S,M, v) = inf
µ,λ,ρ

inf
γ

(
EQ[Φλ,µ,γ,ρ(0, 0)] − β2

1
2

∫ S

0
tdγ(t) − µS − λM − ρv + β2M

2

2 − β3S
2

4

)
.

(2.15)

Notice that the ψβ̄,− defined here differs from (2.11) by an extra Lagrange multiplier term ρ. If it
is clear from context which scenario we are in, we will sometimes exclude the − in the subscript.

The domain of ψβ̄,− is the set

C− = ∩ρ,τ,η∈[−1,1]3{(S,M, v) : Ex0∼Q[ inf
x∈Ω

{ρx2+τxx0+xη}] ≤ ρS+τM+ηv ≤ Ex0∼Q[sup
x∈Ω

{ρx2+τxx0+xη}]}.

(2.16)
Furthermore, in the context of illscored models, we let Cβ denote the set of maximizers of ψβ given
in (2.15) over the set C defined in (2.16) subject to a constraint on the third coordinate, that is

Cβ̄ = argmax
(S,M,v)∈C−:v=x−

ψβ,−(S,M, x−). (2.17)

We use the same notation as the previous set of maximizers defined in (2.13), but it is understood
that the tuple β̄ has a negative fourth coordinate in (2.17), while in (2.13), the fourth coordinate
is 0.

Theorem 2.4 (Negative β4). Suppose that x0,N is tame and β4 < 0. Let x− = min conv(Ω)
denote the point in the convex hull of the parameter space closest to the origin. The maximum
pseudo-likelihood satisfies

max
x∈ΩN

1
N

(
Lg

N (Y, x) −
∑
i≤j

g(Yij , 0)
)

−
√
N(x−)2β4 → sup

(S,M)∈C
ψβ̄,−(S,M, x−) (2.18)

almost surely. Furthermore, for any sequence of choices of x̂N
PMLE, the corresponding sequence

(SN (x̂PMLE),MN (x̂PMLE)) is tight with limit points contained in Cβ̄.

Similarly to the case with positive score, if x̄0 = c1 and x− = 0 then CS(x̂PMLE,x0) = 0 and the
estimator is useless.
2.7. The score-corrected pseudolikelihood. As seen in the previous section, ill-scored pseu-
dolikelihoods have behaviour dictated by the sign of β4 which introduces a very large uniformative
“spike” in the models, which can lead to a complete failure of the inferential procedure in certain
scenarios. To this end, we propose a correction to the pseudo-likelihood estimator that resolves
this issue.

A natural way to deal with the high order term when β4 ̸= 0 is to introduce an additional term to
the pseudo-likelihood to centre the corresponding score by using an estimate of the score parameter,
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β4. A priori, the statistician does not have access to P0. That said, for any pseudo-likelihood, g,
we can consider the estimator,

β̂4 = 1
N2

∑
i≤j

∂wg(Yij , 0).

If we let x̄0 = 1
N

∑
x0

i , then by the law of large numbers, this quantity will concentrate around its
expected value

β̂4 = 1
N2

∑
i≤j

∂wg(Yij , 0) ≈ EY [∂wg(Yij , 0)] = EP0 [∂wg(Yij , 0)] + 1
N2β2

∑
i≤j

x0
ix

0
j√
N

+O(N−1)

= β4 + β2
x̄0

2
√
N

+O(N−1)

where the lower order terms β2
x̄02
√

N
come from the fact that we can estimate EY [∂wg(Yij , 0)] using

the data distribution. (See Lemma F.2 for a precise statement.) While nominally, the second term
is a lower order effect, this lower order term will have a nontrivial contribution when multiplied
by N3/2, i.e., the appropriate power of N to counteract the expected score. Thus EP0 [∂wg(Yij , 0)]
unfortunately remains inaccessible.

To account for this, let us introduce a hyper-parameter α ∈ R and define the corresponding
score-corrected pseudo-likelihood by

Lg
N,α(Y, x) =

∑
i≤j

g
(
Yij ,

λxixj√
N

)
−N

3
2 β̂4x̄

2 +Nαx̄2. (2.19)

The centering by −N
3
2 β̂4(x̄)2 kills of the large effect induced by score parameter, while α is a ridge

correction term to offset the lower order terms in the score approximation β̂4. If α = β2EQ[x0]2 then
pseudo maximum likelihood estimation on the score-corrected likelihood is equivalent to optimizing
the pseudo-likelihood

Lg
N,α(Y, x) =

∑
i≤j

g
(
Yij ,

λxixj√
N

)
−N

3
2β4x̄

2.

Remark 2.2. One might also consider a slightly generalized version of the score corrected pseudo
likelihood,

Lg
N,γ(Y, x) =

∑
i≤j

g
(
Yij ,

λxixj√
N

)
−N

3
2γx̄2.

If we take γ = β4, then this will also remove the adverse effect caused by non-zero score. However,
the scaling of the correction term is order N3/2, so that γ must be calibrated to within o(N

1
2 ) of

β4 to avoid introducing lower order corrections.

We have the following variational formula for the score-corrected pseudo-maximum likleihood.
Let

ψβ,α(S,M, v) = ψβ,−(S,M, v) − β2[EQx0]2v2

2 + αv2

2 . (2.20)

Note that the information parameters β1, β2, β3 are defined with respect to g and not gc. The
domain of this function is C− defined in (2.16). Let

Cβ,α = argmax
(S,M,v)∈C

ψβ,α(S,M, v).

9



Theorem 2.5. Suppose that x0 is tame. The maximum pseudo-likelihood satisfies

max
x∈ΩN

(Lg
N,α(Y, x) −

∑
i≤j

g(Yij , 0)) → sup
(S,M,v)

ψβ̄,α(S,M, v) (2.21)

almost surely. Furthermore, for any sequence of choices of x̂N
PMLE, the corresponding sequence

(SN (x̂PMLE),MN (x̂PMLE)) is tight with limit points contained in Cβ,α.

Remark 2.3. If α = β2EQ[x0]2, then the variational formula is equivalent to a regular model with
information parameters β1, β2, β3.

3. Strong and coarse equivalence of inference tasks and a universal task

It is natural to ask if two pseudo likelihoods lead to estimators that are, from a statistical per-
spective, equivalent. For example, in the spiked matrix model, while the top eigenvector obtains a
nontrivial cosine similarity with the ground truth, any other unit vector with the same cosine sim-
ilarity has the same performance with respect to the underlying statistical task. It turns out that
our results lead to an even deeper notion of equivalence between pseudolikelihood estimation prob-
lems. For example, there is a precise sense in which maximum likelihood estimation of the “spike”
in spiked matrix models is “equivalent” to maximum likelihood estimation of the communities in
stochastic block models!

Our first notion of equivalence is strong equivalence.

Definition 3.1. We say that two inference tasks are strongly equivalent if they have the same
information parameters.

Evidently strong equivalence is an equivalence relation. Furthermore, there is a natural universal
statistical task corresponding to given information parameters which is defined as follows.

Let g1 denote a pseudo likelihood whose information parameters with respect to g0 are given by
β̄ = (β1, β2, β3, β4). We consider the corresponding inference task with likelihoods given by

gβ̄
U,0(y, w) = − 1

2β1
(y − β2w − β4)2 − 1

2 log(2πβ1) , (3.1)

gβ̄
U,1(y, w) = −1

2(y − w)2 − β3 − 1
2 w2 , (3.2)

which corresponds to least squares estimation with a correction. The universal statistical corre-
sponds to estimating the spike in the matrix

Y = G+ β2√
N
x0(x0)T ,

where G has i.i.d N (β4, β1) entries, via the pseudo-likelihood gβ̄
U,1.

Theorem 3.1. Any inference task (g0, g1) with information parameters given by β̄ is strongly
equivalent to the inference task (gβ̄

U,0, g
β̄
U,1).

Remark 3.1. Theorem 3.1 simplifies greatly in the well scored case with β3 > 0. In this case gβ̄
U,1,

may instead be taken to be −1
2(y −

√
β3w)2, with an appropriate normalization in gβ̄

U,0.

An important consequence of our work is that there is in fact a substantially weaker notion of
equivalence that captures the underlying statistical task. Recalling the statistical interpretation of
Cβ from Theorem 2.1, 2.3, 2.4, 2.5 as the set of near optimal overlaps of estimators in the respective
problems, we are led to the following natural notion.

10



Definition 3.2. We say that two inference tasks (g1
0, g

1) and (g2
0, g

2) are coarsely equivalent if
Cβ̄1 = Cβ̄2 where β̄i = β̄(gi

0, g
i) for i = 1, 2 are their corresponding information parameters.

Notice that if g1 and g2 have the same information parameters with respect to g1
0, g

2
0 then they are

coarsely equivalent. More generally, one has the following sufficient conditions for coarse equivalence
of well-scored pseudolikelihoods.

Theorem 3.2. Consider two well-scored inference tasks (g1
0, g

1) and (g2
0, g

2), with information
parameters β̄(g1) = β̄(g1

0, g
1) and β̄(g2) = β̄(g2

0, g
2). Suppose that at least one of the following

conditions are true
• The ratio of all the information parameters is constant

β1(g1)
β1(g2) = β2(g1)

β2(g2) = β3(g1)
β3(g2) , (3.3)

• There exists a constant C such that the parameter space Ω satisfies |x| = C for every x ∈ Ω
and the first ratio of the two information parameters are equal

β1(g1)
β1(g2) = β2(g1)

β2(g2) , (3.4)

then (g1
0, g

1) and (g2
0, g

2) are coarsely equivalent.

In the case of ill-scored pseudolikelihoods one must further include a condition on the correction
parameters used:

Theorem 3.3. Consider two ill-scored inference tasks (g1
0, g

1) and (g2
0, g

2) with information pa-
rameters β̄(g1) = β̄(g1

0, g
1) and β̄(g2) = β̄(g0, g

2), and let α1 and α2 be the correction parameters
for g1 and g2 respectively. Suppose that at least one of the following conditions are true

• The ratio of all the information and correction parameters are constant
β1(g1)
β1(g2) = β2(g1)

β2(g2) = β3(g1)
β3(g2) = β4(g1)

β4(g2) = α1

α2 , (3.5)

• There exists a constant C such that the parameter space Ω satisfies |x| = C for every x ∈ Ω
and the first ratio of the the information and correction parameters are equal

β1(g1)
β1(g2) = β2(g1)

β2(g2) = β4(g1)
β4(g2) = α1

α2 , (3.6)

then (g1
0, g1) and (g2

0, g2) with correction parameters α1 and α2 are coarsely equivalent.

Remark 3.2. While Theorem 3.1 guarantees a measure of the performance of the pseudo likelihood
g1 in terms of the performance of a least squares problem, it does not mean that the performance
of g1 is equivalent to the performance of least-squares for the initial matrix Y . In fact, we show in
Section 4 that the least square estimator can be completely uninformative regardless of the SNR
used.

4. Application to Gaussian Pseudolikelihoods (a.k.a. the best rank 1
approximation)

A popular approach to tackling rank one estimation problems is to consider the best rank 1
approximation. That is, consider a vector, x ∈ ΩN , such that

x̂LS(λ) = arg min
x∈ΩN

1
2

∥∥∥∥Y − λxx⊺
√
N

∥∥∥∥2

F

,

11



where λ > 0 is a scale hyper-parameter. Observe that this corresponds to pseudolikelihood estima-
tion with a Gaussian likelihood g(y, w) = − 1

2σ2 (y − λw)2 where σ2 = E0[Y 2]. Let

βLS = E[Y ∂wg0(Y, 0)]
σ

.

We then have the following.

Proposition 4.1. The pair (g, g0) has information parameters (λ2, λβLS , λ
2, λE0Y ). In particular

g is well-scored if and only if E0Y = 0.

Let us pause to consider the case that g is well-scored and βLS > 0. In this case Theorem 2.1
applies. In particular, the corresponding overlap and squared norm have limit points lying in Cβ.
If λ = σ

√
βLS then the information parameters satisfy the Rao relation. Note that by Cauchy-

Schwarz, βLS ≤
√
β0. If, furthermore, βLS =

√
β0 then information parameters are equal to those

of the log-likelihood.
In practice, we do not necessarily know that the data distribution under the null model has

zero mean, and, as shown in Example 2.1 above, a seemingly innocuous misspecification can lead
to substantial effects on inference. In order to counteract these potential effects, we introduce a
score-corrected best rank 1 approximation (as in Section 2.7) by subtracting off the mean of the
data distribution and adding a ridge term.
Let

Ȳ = 1
N2

∑
i≤j

Yij

and consider the score-corrected least squares estimator

x̂LS,α(λ, α) = arg min
x∈ΩN

1
2

∥∥∥∥Y − λxx⊺
√
N

∥∥∥∥2

F

+N3/2Ȳ x̄2 −Nαx̄2,

where λ > 0 is a scale parameter. To offset the correction term, we set
α = β2EQ[x0]2 = λβLSEQ[x0]2 ,

and then Theorem 2.5 applies.
It is interesting to note that the above gives the following important negative result.

Proposition 4.2. If βLS = 0 and x0,N is tame with EQx
0 = 0, then

CS(x̂PMLE,x) → 0 a.s.

This occurs, for example, in the case of sparse Rademacher matrices. See Section 5.3 and Table 1
below.

5. Examples

In this section, we outline several explicit models which fall into our framework. We summarize
some of the models we consider, and their corresponding likelihoods and information parameters
in the table below.

5.1. Spiked Matrices and Z2 synchronization. Suppose that we want to recover an unknown
vector x0 that has been corrupted with additive Gaussian noise Gij ∼ N(0, 1) at signal to noise
ratio λ0. That is,

Y = G+ λ0√
N
x0x

⊺
0 .

In the case that x0 has {±1} valued entries, this is known as the Z2 synchronization problem. This
special case has been studied extensively (see [57], [71], [62], [18], [11])

12



Model Type Likelihood β1 β2 β3 β4
Spiked Wigner with
SNR λ0

−1
2(y − λw + C)2 − 1

2 log(2π) λ2 λλ0 λ2 C

Community Detection
(1

2 , µ0) y log(1
2 + µw) + (1 − y) log(1

2 − µw) 4µ2 4µµ0 4µ2 0

Sparse Rademacher −1
2(y − λw)2 − 1

2 log(2π) λp 0 λ2 0

Signs of Spiked Wigner
Matrix with SNR λ0

(1−y)
2 log 1√

2π

∫−λw
−∞ e− x2

2 dx

+ (1+y)
2 log 1√

2π

∫∞
−λw e

−x2/2dx
2
πλ

2 2
πλ

2 2
πλ

2 0

Table 1. This table lists the information parameters of several well studied infer-
ence problems that fall under our framework. These examples are described in detail
in Section 5.

In this case, the log likelihood of any coordinate is given by:

g0(y, w) = −1
2(y − λ0w)2 − 1

2 log(2π) .

Suppose that we have misspecified the signal to noise ratio λ ̸= λ0, and we build statistical estima-
tors from the following misspecified spiked matrix model

Y = G+ λ√
N
x0x

⊺
0 , (5.1)

in other words, we assume that the log likelihood is given by:

gλ(y, w) = −(y − λw)2

2 − 1
2 log(2π).

The information parameters for are given by

β0 = λ2
0 , β1(λ) = λ2 , β2(λ) = λλ0 , β3(λ) = λ2 (5.2)

where we recall that β0 is the true information parameter associated with the correctly specified
model.

5.2. Stochastic Block Model. We now consider a community detection problem with two groups.
We work with the Stochastic Block Model SBM(n, 1

2 +µ0N
−1/2, 1

2 −µ0N
−1/2) on two communities.

In this model we shall assume that our unknown signal x0 lies in {±1}N , and serves as the index
vector for the two communities. The corresponding data matrix is the adjacency matrix, and its
entries have distribution given by:

P
(
Yi,j = 1 | xixj√

N

)
= 1

2 + µ0
xixj√
N

and P
(
Yi,j = 0 | xixj√

N

)
= 1

2 − µ0
xixj√
N
.

The parameter µ0 > 0 represents the difference between the probability of edges appearing within
and outside of each group. Notice that when xi, xj take the same sign, the probability is higher,
and when xixj take different signs then the probability of connecting an edge is lower. The

√
N

scaling is such that the detection problem becomes non-trivial, and a phase transition on the weak
recovery of the groups is observable (see [57] ). More generally the Stochastic block model has been
studied in a wide variety of regimes for the connection probabilities between communities (see [1]
for a detailed overview of different regimes). There is a large collection of literature concerned with
showing when different notions of recovery of the communities is possible, as well as when there

13



Figure 1. The cosine similarity in the spiked matrix problem with Rademacher
latent variable and noise with mean 1. A data matrix of size 2500 × 2500 and the
uncorrected and corrected likelihoods were optimized using gradient descent. It is
clear that correcting the likelihood gets rid of the effect from the score parameter,
and the corresponding PMLE estimator achieves a non-zero cosine similiarty.

are efficient algorithms for recovery. See [2, 40, 62, 39, 60, 26] and the references therein.
For the SBM with connection probabilities as above, the loglikelihood is given by

g0(Y,w) = Y ln(1
2 + µ0w) + (1 − Y ) ln(1

2 − µ0w).

Suppose that a signal to noise ratio µ0 ̸= µ is chosen, that is, we choose the pseudo-likelihood

g(Y,w) = Y ln(1
2 + µw) + (1 − Y ) ln(1

2 − µw) ,

then the information parameters are given by
β1 = 4µ2, β2 = 4µµ0, β3 = 4µ2, β4 = 0 ,

and the Rao relation is not satisfied. We note however that β4 = 0 and so our choice of pseudo-
likelihood is well scored.

One method to introduce an ill-scored pseudo-likelihood is to work with an incorrect assumption
on the null-model. If we suppose that null model corresponds to the adjacency matrix of a G(n, p)
matrix with p ̸= 1/2, that is the pseudo-likelihood is given by:

gp(y, w) = y log(p+ µw) + (1 − y) log(1 − p− µw) ,
and a direct computation yields:

β
gp

4 = µ(1 − 2p)
2p(1 − p) ,

which is zero if and only if p = 1/2.

5.3. Sparse Rademacher Matrices and Best Rank-1 approximation. We now consider a
class of sparse submatrix detection problems [14]. For this example, we suppose that our unknown
vector lies in ΩN where Ω is either an interval [a, b] or a finite set.
Consider the case where Y is a sparse Rademacher matrix, i.e Y , conditionally on w, takes values
in {−1, 0, 1} with probabilities given by:

P
(
Yij = ±1|xixj√

N

)
= p

2 + λ
xixj√
N
, and P

(
Y = 0| xixj√

N

)
= 1 − p− 2λxixj√

N
, (5.3)
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Figure 2. The cosine similarity in the sparse Rademacher problem. A data matrix
of size 2500 × 2500 and corrected and uncorrected least squares was performed on
the data matrix and optimized using gradient descent. It is clear that the least
squares estimator was uninformative and always achieved a cosine-similarity of zero.

where throughout p is a fixed number in (0, 1). In this case the log-likelihood is given by:

g0(Y,w) = (1 − Y 2) log(1 − p− 2λw) + Y (Y − 1)
2 log(p/2 + λw) − Y (1 + Y )

2 log
(p

2 + λw
)
,

and the corresponding score parameters are given by:

β1 = β2 = β3 = 4λ2

1 − p
+ λ2

p
.

Suppose now that we try to infer the unknown vector via the best rank 1 approximation, that is,
we try to minimize

min
x∈ΩN

∥∥∥∥∥Y − λ
xxT

√
N

∥∥∥∥∥
2

F

,

then as discussed in Section 4, the corresponding estimator xLS corresponds to a pseudo likelihood
estimator x̂PMLE with pseudo-likelihood given by:

g(Y,w) = −1
2(Y − λw)2 − log(2π) .

By Proposition 4.1 the model is well scored, and furthermore, an explicit computation shows the
Fisher parameters for the proxy model are given by:

β1 = λp, β2 = 0, β3 = λ2 ,

and consequently by Proposition 4.2 the least-square estimator is completely uninformative pro-
vided that the limiting empirical measure of x0,N is balanced.

5.4. Non-Linear transformations of rank 1 matrices. Consider a data vector x ∈ {±1}N ,
and a spiked Wigner matrix W given by:

W = G+ λ√
N
xxT ,

where G is a symmetric matrix with i.i.d standard Gaussian entries. From W we consider the
transformation taking each entry Wij and sending them to Yij = F (Wij) for some function F .
Non-linear transformations of random matrices have applications in to kernel methods [76, 52, 51]
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and the spectra of one-layer neural networks [69, 72, 21]. The spectra of F (Wij) was thoroughly
analyzed in [36] and [31].

From the matrix Y we will study the behavior of maximum likelihood estimation for certain
choices of F . We remark that some choices of F will lead to irregular likelihoods that do not fall
into our framework. We provide an example in Section 5.4.2.

5.4.1. Rounded Entries: Suppose that F (x) = sgn(x) (with the convention that sgn(0) = 1). This
is the censored spiked matrix model that was studied recently in [54]. In this case the likelihood of
the output matrix Y is given by:

g(y, w) = (1 − y)
2 log 1√

2π

∫ −λw

−∞
e− x2

2 dx+ (1 + y)
2 log 1√

2π

∫ ∞

−λw
e−x2/2dx .

We may explicitly compute the β values in this case:

β1 = β2 = β3 = 2
π
λ2, β4 = 0 .

5.4.2. Squaring Entries: We now provide an example which does not fall into the class F0. Suppose
we choose F (x) = x2, then explicitly one computes the log-likelihood to be given by:

g(y, w) = −1
2 log(2π) − log(2) − 1

2 log(y) + log
[
e−(√y−λw)2/2 + e−(√y+λw)2/2

]
.

In particular, the second derivative of g(y, w) at w = 0 is given by:

∂2
wg(y, 0) = λ2(y − 1) ,

and consequently the bound
∥∥∂2

wg(·, 0)
∥∥ < ∞ fails.

6. Outline of Proofs

In this section, we will summarize the strategy to prove the main results. The proofs will be
deferred to the relevant sections of the Appendix. To simplify the notation in this section, we
only consider ill-scored scenario. The case for well-scored problems are simpler and the proof is
essentially the same. The only difference is the constraint on the mean x̄, which is unneeded.

6.1. Universality. We begin by showing that the limit of the (normalized) maximum pseudo-
likelihood is equivalent to that obtained by a maximization of a Gaussian model parameterized by
the information parameters. The Gaussian model is given by

H β̄
N (x) =

√
β1√
N

∑
1≤i≤j≤N

gijxixj + β2
N

∑
1≤i≤j≤N

x0
ix

0
jxixj − β3

2N
∑

1≤i≤j≤N

x2
ix

2
j + β4

∑
1≤i≤j≤N

xixj√
N

=
√
β1√
N

∑
ij

gijxixj + Nβ2
2 R2

10 − Nβ3
4 R2

11 + β4N
3
2 (x̄)2 + oN (1) (6.1)

where we for vectors x1,x2 ∈ RN , we denote the normalized inner product by

R(x1,x2) = 1
N

N∑
i=1

x1
ix

2
i ,

and we set R11 = R(x,x), R10 = R(x,x0), x̄ = R(x,1).
We will prove in Appendix A that the asymptotic MLE is equal to the one given by the maximum

of the proxy model on average. Given S,M, v ⊆ R, let Ωε(S,M, v) denote the set of points in ΩN

within ε of (S,M, v), i.e

Ωε(S,M, v) := {x ∈ ΩN : |R1,1 − S| ≤ ε, |R1,0 −M | ≤ ε, |x− v| ≤ ε} ,
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and let us define

Lg,ε
N (S,M, v) = E max

Ωε(S,M,v)

(∑
i<j

g
(
Yij ,

xixj√
N

)
−
∑
i<j

g(Yij , 0)
)
,

and
Lβ̄,ε

N (S,M, v) = E max
Ωε(S,M,v)

H β̄
N (x) ,

to denote the restricted pseudo MLE and the proxy MLE respectively. We will prove in Section A
that the pseudo MLE and the proxy MLE are equivalent in the following sense.

Lemma 6.1. If g, g0 ∈ F0, then for any (S,M, v) ∈ Cc

lim
N→∞

1
N

|Lg,ε
N (S,M, v) − Lβ̄,ε

N (S,M, v)| = 0 ,

where β̄ are the information and score parameters defined in (2.5), (2.6), (2.7), (2.8).

This is proved by showing equivalence for smooth approximations of the MLE. Let PX(x) be the
uniform measure on Ω. We approximate the pseudo MLE with log likelihood ratio of the posterior.
We define the log-likelihood ratio associated with the pseudo likelihood

FN (g, ε;S,M, v) := 1
N

(
EY

(
log

∫
Ωε(S,M,v)

e

∑
i<j

g

(
Yij ,

xixj√
N

)
dP⊗N

X (x) −
∑
i<j

g(Yij , 0)
))

, (6.2)

where EY is with the average with respect to the conditional data distribution (2.1). On the other
hand, we define the Gaussian log-likelihood ratio for β̄ = (β1, β2, β3, β4) ∈ R4 by

FN (β̄, ε;S,M, v) := 1
N

EY log
∫

Ωε(S,M,v)
eHβ̄

N (x) dP⊗N
X (x) , (6.3)

where H β̄
N (x) is as in (6.1). We define F g,ε

N and F β̄,ε
N to be the equal to (6.2) and (6.3) without the

constraints. These quantities approximate the pseudo MLE in the sense that for any (S,M, v) ∈ Cc

lim
L→∞

lim
N→∞

| 1
L
FN (Lg, ε;S,M, v) − 1

N
Lg,ε

N (S,M, v)| = 0 (6.4)

lim
L→∞

lim
N→∞

| 1
L
FN (Lβ̄, ε;S,M, v) − 1

N
Lβ̄,ε

N (S,M, v)| = 0 . (6.5)

An analogous statement holds for the unconstrained versions. Universality for the PMLE is then
proved in the following:

Lemma 6.2. If g, g0 ∈ F0, then for any S,M, v ∈ Cc

lim
L→∞

lim
N→∞

∣∣∣∣ 1LFN (Lg, ε;S,M, v) − 1
L
FN (Lβ̄, ε;S,M, v)

∣∣∣∣ = 0

and
lim

L→∞
lim

N→∞

∣∣∣∣ 1LFLg,ε
N − 1

L
FLβ̄,ε

N

∣∣∣∣ = 0

where β̄ are the information and score parameters defined in (2.5), (2.6), (2.7), (2.8).

The key idea in this proof is that at the level of the log likelihood, we are able to use Taylor’s
theorem to expand around the likelihood in the exponent with respect to the xixj√

N
. The second order

coefficients of the Taylor series will concentrate in the high dimensional limit while the first order
term will be approximately Gaussian with a specific mean and variance given by the information
coefficients.
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The main consequence of Lemma 6.2 is that it suffices to compute the limit in the case of the
Gaussian model instead of FN (β̄;S,M, v) instead of the pseudo MLE. The computation of this
limit is the focus of the following two sections.

6.2. Derivation of the Variational Formula I. In this section, we once again use the approxi-
mation of the likelihoods with the loglikelihood ratios and first compute the limit of the loglikelihood
ratio. Our goal is to first define the variational formula for the loglikelihood ratios.

Notice that the term corresponding to H β̄
N is of higher order, so this term must be corrected in

order to have a well defined limit. To this end, we define

H β̄,α
N (x) = H β̄

N (x) − β4N
3
2 (x̄)2 + αN(x̄)2 ,

which is the proxy model for (2.19). We define

FN,α(β̄, α, ε;S,M, v) := 1
N

EY log
∫

Ωε(S,M,v)
eHβ̄,α

N (x) dP⊗N
X (x) ,

and let FN,α(β̄, α, ε) denotes its unconstrained version.
We now define the variational formula which will compute the limit. Let ζ be a probability

measure, and let Φζ,µ,λ,ρ(t, y) be the unique weak solution to the Parisi PDE{
∂tΦζ,µ,λ,ρ = −β1

4 (∂2
yΦζ + ζ([0, t])(∂yΦζ)2) (t, y) ∈ (0, S) × R

Φζ,µ,λ,ρ(S, y;x0) = log
∫
eyx+λxx0+µx2+ρx dPX(x)

. (6.6)

See [46] for the notion of weak solutions for this PDE and the corresponding well-posedness. Define
the corresponding Parisi functional by
φβ̄,α(S,M, v)

= inf
µ,λ,ρ,ζ

(
EQ[Φζ,µ,λ,ρ(0, 0;x0)] − β1

2

∫ S

0
tζ([0, t]) dt− µS − λM − ρv + β2M

2

2 − β3S
2

4 + αv2

2

)
.

Furthermore, we see that (R1,1, R1,0, x̄) asymptotically live in the closed subset Cc of [0, C2] ×
[−C2, C2] × [−C,C] defined in (B.5). This is the domain of our functional. We will show in
Appendix B that the limit of the loglikelihood is given by the Parisi functional.

Theorem 6.1. For any β1, β2, β3 and α and constraints (S,M, v) ∈ C, we have

lim
ε→0

lim
N→∞

FN,α(β̄, α, ε;S,M, v) = φβ,α(S,M, v)

and for the unconstrainted problem
lim
ε→0

lim
N→∞

FN,α(β̄, α, ε) = sup
S,M,v

φβ,α(S,M, v).

Remark 6.1. For regular models, the constraint on v can be completely removed and was proven
in [37]. In such cases, the optimization is over the functional φβ̄ which is defined on only two
parameters S and M .

The proof of this results relies heavily on the techniques first developed to study the Sherrington–
Kirkpatrick model in spin glasses [35, 81, 4, 64]. By introducing small perturbation to the loglike-
lihood, we are able to show characterize the limiting behaviour of independent samples from the
perturbed posterior measure and explicitly compute the limit. The proof also borrows techniques
from large deviations to remove deal with the constraint on the overlaps.

Having computed the appropriate limit of FN (β̄;S,M, v), we can apply Lemma 6.2 to recover
the limit of the loglikihood ratio. By (6.4) if one can compute the limit of this quantity as L → ∞,
then we can recover the limiting formula for the pseudo MLE.
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6.3. Derivation of the Variational Formula II. This variational formula holds for all β1, β2, β3
and α, so it also holds when these parameters are scaled by L as in the smooth approximation. We
will show in Appendix C that taking the limit as L → ∞ of this variational formula will give the
formula for the MLE, after an application of (6.4), which will give us a variational formula for the
limit of pseudo MLE.

Lemma 6.3. For any β̄, in the constrained PMLE we have

lim
ε→0

lim
N→∞

1
N

Lg,ε
N (S,M, v) = lim

ε→0
lim

N→∞

1
N

Lβ̄,ε
N (S,M, v) = ψβ̄,α(S,M, v) ,

and in the unconstrained PMLE,

lim
ε→0

lim
N→∞

1
N

Lg,ε
N = lim

ε→0
lim

N→∞

1
N

Lβ̄,ε
N = sup

(S,M,v)∈Cc

ψβ̄,α(S,M, v) ,

where
ψβ̄,c(S,M, v) = ψβ̄,−(S,M, v) + αv2

2
and ψc,−(S,M, v) is given by (2.15).

This proof uses the Γ limit of the solutions in [45] to the Parisi PDE (B.24) to identify ψβ̄ as
the limit of 1

Lφβ̄. In the lemma above the constrained case is established in Appendix C. The limit
formula in the unconstrained is established in Appendices D and E, by proving an equicontinuity
statement for the family of functionals 1

LφLβ̄.
Having understood the limiting variational formula, one can also show using (6.4), that this

limiting variational formula characterizes the constrained pseudo MLE.
We can conclude that the limit of the pseudo MLE is a variational optimization over the pa-

rameters S,M, v. We will show in the next section that the maximizers of the variational problem
encode the limiting performance of the maximum likelihood estimators.

6.4. Characterization of the Maximizers. In Appendix G we prove tightness of the overlaps
as stated in Theorems 2.1 and 2.5. The tightness will follow from concentration properties satisfied
by the proxy model (6.1), and the results proved in Appendix C.

Next, under the further assumption that ψβ̄,α has a unique maximizer, we are able to prove the
following characterization of performance:

Lemma 6.4. For g, g0 ∈ F0 let β̄ denote the corresponding information and score paramters and
suppose that ψβ̄ has a unique (up to the sign of m) maximizer (sβ̄,±mβ̄, vβ̄). Then

|CS(x̂PMLE,x0)| →
|mβ̄|

(sβ̄EQ(x0)2)1/2 a.s (6.7)

1
N

∥x̂P MLE∥2 → sβ̄ a.s. (6.8)

6.5. Coarse Equivalence of Estimators. In Section H, we prove a sufficient condition for when
two likelihoods are coarsely equivalent. Coarse equivalence will follow as a consequence of the
universality result in Lemma 6.1. Given likelihoods g1, g2 which satisfy :√

β1(g1)√
β1(g2)

= β2(g1)
β2(g2) = β3(g1)

β3(g2) = β4(g1)
β4(g2) = C, (6.9)

the corresponding proxy-models will be a scalar multiple of each-other. Consequently the collection
of near-maximizers will be the same for both problems, and the result will then follow from Theo-
rems 2.1 and 2.5. We further prove theorem 3.1 in this section, it will be an immediate consequence
of the universality established in Theorems 2.1 and 2.5.
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Appendix A. Universality with Non-Zero Score

In this section, we prove universality of pseudo maximum likelihood estimation with possibly
non-zero score parameters. This extends the universality result in [37] for the MLE and removes
the zero score assumption in [37, Hypothesis 2.3].

Given the information and score parameters, we define the proxy log-likelihood function corre-
sponding to β̄ as

H β̄
N (x) = β1√

N

∑
1≤i≤j≤N

gijxixj + β2
N

∑
1≤i≤j≤N

x0
ix

0
jxixj − β3

2N
∑

1≤i≤j≤N

x2
ix

2
j + β4

∑
1≤i≤j≤N

xixj√
N

= β1√
N

∑
ij

gijxixj + Nβ2
2 R2

10 − Nβ3
4 R2

11 + β4N
3
2 (x̄)2 + oN (1) , (A.1)

where we recall that the overlaps and magnetization are denoted by

R10 = 1
N

N∑
i=1

xix
0
i , R11 = 1

N

N∑
i=1

x2
i , x̄ = 1

N

N∑
i=1

xi .

Given subsets A,B,C of R, let

Lg
N (A,B,C) := 1

N
E max

R10∈A,R11∈B,x̄∈C

(∑
i<j

g
(
Yij ,

xixj√
N

)
−
∑
i<j

g(Yij , 0)
)

Lβ̄
N (A,B,C) := 1

N
E max

R10∈A,R11∈B,x̄∈C
H β̄

N (x)

denote the normalized pseudo MLE and the proxy MLE respectively. The goal of this section is to
show that these quantities converge to the same value.

Lemma A.1. If g, g0 ∈ F0, then for any A,B,C ⊂ R

lim
N→∞

|Lg
N (A,B,C) − Lβ̄

N (A,B,C)| = 0

where β̄ are the information and score parameters defined in (2.5), (2.6), (2.7), (2.8).

The proof of the MLE formulas will follow from an extension of the universality for Bayesian
models proven in [37]. In contrast to the Bayesian inference setting, we fix x0 and define the
log-likelihood ratios
FN (g;A,B,C)

= 1
N

(
EY

(
log

∫
1(R10 ∈ A,R11 ∈ B, x̄ ∈ C)e

∑
i<j

g

(
Yij ,

xixj√
N

)
dP⊗N

X (x) −
∑
i<j

g(Yij , 0)
))

(A.2)

where EY is with the average with respect to the conditional data distribution (2.1).
The dependence of FN on x0 will remain implicit. We can interpret these log-likelihood as a

smooth approximation of constrained Pseudo maximum likelihood estimation. We have standard
bounds relating LN and FN given by:

Lg
N (A,B,C) ≤ FN (Lg;A,B,C)

L
≤ Lg

N (A,B,C) + oL(1) , (A.3)

which are obtained by either replacing g in the exponent with its maximum value or by localizing
around the maximum value. The regularity conditions on g are essential in this argument.

We also define the Gaussian log-likelihood ratio for β̄ = (β1, β2, β3, β4) ∈ R3
+ × R by

FN (β̄;A,B,C) = 1
N

EY log
∫
1(R10 ∈ A,R11 ∈ B, x̄ ∈ C)eHβ̄

N (x) dP⊗N
X (x) ,
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where H β̄
N (x) was defined in (A.1). In the case that Ω is discrete we let PX denote counting

measure, and in the case that Ω is an interval, we let PX denote normalized Lebesgue measure. We
start by proving universality for log-likelihood.

Proposition A.1 (Universality of Bayesian Models). If g, g0 ∈ F0, then for any A,B,C ⊂ R there
exists a constant K > 0 depending only on g, g0 such that∣∣FN (g;A,B,C) − FN (β̄;A,B,C)

∣∣ ≤ K√
N

where β̄ = (β1, β2, β3, β4) are the Fisher score parameters defined in (2.5), (2.6), (2.7), (2.8).

Proof. The proof is in Section 3 from [37]. We highlight the key steps. To simplify notation, we let
Ω(A,B,C) := {R10 ∈ A,R11 ∈ B, x̄ ∈ C} ,

and we let K denote a universal constant that only depends on the supports Ω and Ω0, but not on
the dimension N .

Step 1 - Approximation by Third Order Terms: We first show that to leading order in N , it
suffices to consider only a third order expansion of the loglikelihood around w = 0, define a proxy
F (1) by:

F
(1)
N (g;A,B,C) = 1

N

(
EY

(
log

∫
1(Ω(A,B,C))e

∑
i<j

∂wg(Yij ,0)wij+ 1
2 ∂

(2)
w g(Yij ,0)w2

ij dP⊗N
X (x)

)
.

By our regularity assumptions on g we may Taylor expand the log-likelihood. In particular,
Taylor’s theorem implies there is θij ∈ [0, 1] such that

(g(Yij , wij) − g(Yij , 0)) = ∂wg(Yij , 0)wij + 1
2∂

(2)
w g(Yij , 0)w2

ij +
w3

ij

3! ∂
(3)
w g(Yij , θijwij) ,

and since ∂(3)
w g(Yij , θijwij) is uniformly bounded and |wij | ≤ C2λ√

N
, we have∣∣∣∣FN (g;A,B,C) − F

(1)
N (g;A,B,C)

∣∣∣∣ ≤ ∥∂(3)
w g(Yij , θijwij)∥∞K√

N
,

and thus, it suffices to compute the limit for F (1)
N .

Step 2 - Control of the Second Order Terms: We now show that we can replace ∂(2)
w g(Yij , 0)w2

ij in
the exponent with its average. Define

F
(2)
N (g;A,B,C) = 1

N

(
EY

(
log

∫
1(Ω(A,B,C))e

∑
i<j

∂wg(Yij ,0)wij+ 1
2EY [∂(2)

w g(Y,0)]w2
ij dP⊗N

X (x)
)
,

then we may express the difference of F (1)
N and F

(2)
N as follows:

F
(1)
N (g;A,B,C) − F

(2)
N (g;A,B,C) = EY

1
N

ln
〈
e

1
2

√
N

∑
i<j

1√
N

(∂(2)
w g(Yij ,0)−EY [∂(2)

w g(Yij ,0)])(xixj)2)〉
,

where for a function f : ΩN → R, the average ⟨f⟩ is defined as:

⟨f⟩ :=
∫
1(Ω(A,B,C))f(x)e

∑
i<j

∂wg(Yij ,0)wij+ 1
2E0[∂(2)

w g(Y,0)]w2
ijdP⊗N

X (x)∫
1(Ω(A,B,C))e

∑
i<j

∂wg(Yij ,0)wij+ 1
2EY [∂(2)

w g(Y,0)]w2
ijdP⊗N

X (x)
.

Now if Z denotes the N ×N symmetric matrix with entries

Zij := 1
2
√
N

(∂(2)
w g(Yij , 0) − E0[∂(2)

w g(Yij , 0)]) ,
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then one may write:∑
i<j

1
2
√
N

(∂(2)
w g(Yij , 0) − EY [∂(2)

w g(Yij , 0)])(xixj)2 = Tr
(
Z(xTx)2

)
.

Note that under P0, Z is a random matrix with centered entries and covariance bounded by C/N .
Using standard concentration inequalities for random matrices (see [6, Theorem 2.3.5]), there exists
T0 > 0 such that

P0 (∥Z∥op ≥ 2T0) ≤ e−cN , (A.4)
for some c > 0. Now on the event that {∥Z∥op ≤ 2T0},

∣∣∣Tr
(
Z(xTx)2)∣∣∣ =

∣∣∣∣∣∣
∑
i,j

Zijx
2
ix

2
j

∣∣∣∣∣∣ ≤ 2T0

N∑
i=1

x4
i ≤ 2CT0N

for some finite constant C depending only the bound on the support of PX , so

EY 1∥Z∥op≤2T0

1
N

ln
〈
e

1√
N

∑
i≤j

1
2

√
N

(∂(2)
w g(Yij ,0)−EY [∂(2)

w g(Yij ,0)])(xixj)2)
〉

≤ 2T0√
N
.

Similarly, on the event that {∥Z∥op ≥ 2T0} we have:

EY 1∥Z∥op≥2T0

1
N

ln
〈
e

1√
N

∑
i≤j

1
2

√
N

(∂(2)
w g(Yij ,0)−EY [∂(2)

w g(Yij ,0)])(xixj)2)
〉

≤ e−cN ,

which follows as ∂2
wg(Yij , 0) is assumed to be uniformly bounded over i, j. Combining, we see for

N sufficiently large that there is some K > 0 such that:∣∣∣F (1)
N (g : A,B,C) − F

(2)
N (g : A,B,C)

∣∣∣ ≤ K√
N
.

Step 3 - Expansion of The First Order Term: We now show that the first order term can be
approximated by a Gaussian random variable with non-zero mean. Define

F
(3)
N (g;A,B,C) := 1

N

(
EY

(
log

∫
1(Ω(A,B,C))e

∑
i<j

β1wij+β2w0
ijwij− 1

2 β3w2
ij+β4wij dP⊗N

X (x)
)
,

and consider the following moments of the information parameter under the data distribution,
(1) µij = EY [∂wg(Yij , 0) | x0]
(2) σ2

ij = EY [(∂wg(Yij , 0) − µij)2 | x0]
(3) γij = EY [∂(2)

w g(Yij , 0) | x0].
Using Taylor’s theorem, these parameters may be expressed in terms of the information parameters
under the null model,

(1) With w0
ij = xixj/

√
N , and recalling the fact that ∥∂wg

0∥∞, ∥∂wg
0∥∞ < ∞ for g, g0 ∈ F0,

we may compute:

µij = EY [∂wg(Yij , 0)|x0] =
∫
∂wg(y, 0)eg0(y,w0

ij) dy

=
∫
∂wg(y, 0)

(
1 + ∂wg

0(y, 0)w0
ij +

(
(∂wg

0(y, 0))2 + ∂(2)
w g0(y, 0)

)(w0
ij)2

2 +O(N−1)
)
eg0(Y,0) dy

= E0∂wg(Y, 0) +
x0

ix
0
j√
N

E0∂wg(Y, 0)g0
w(Y, 0) + ∥∂(2)

w g(Y, 0)∥K
N

= β4 +
x0

ix
0
j√
N
β2 + ∥∂(2)

w g0(Y, 0)∥K
N
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(2) Similarly, expanding the density we see that
σ2

ij = EY [(∂wg(Y, 0))2 − µ2
ij | x0]

=
∫

(∂wg(Y, 0))2eg0(Y,0)(1 +O(N−1/2) dy − µ2
ij

= E0(∂wg(Y, 0))2 − (E0∂wg(Yij , 0))2 + E0[∂wg(Y, 0)2∂wg
0(Y, 0)]w0

ij

= β1 +O

(
L
√
E0[g(Y, 0)4]E0[g0(Y, 0)2]

N1/2

)
,

(3) Similarly, expanding the density we see that
γij = EY [∂(2)

w g(Y, 0) | x0]

=
∫
∂(2)

w g(Y, 0)eg0(Y,0) +O(N−1/2) dy

= E0∂
(2)
w g(Y, 0) + ∥∂(2)

w g(Y, 0)∥K
N1/2

= −β3 + ∥∂(2)
w g(Y, 0)∥K
N1/2

Heuristically, one can expect that in the large N limit, the first disorder term in F
(2)
N can be

approximated with a Gaussian with matching mean and variance, we have that

g(Yij , 0) ≈ σijgij + µij ≈
√
β1gij + β4 +

x0
ix

0
j√
N
β2.

Since we have assumed that EP0 [(∂wf(Y, 0))3] is finite, the substitution can be made precise using
approximate Gaussian integration by parts as was applied to prove universality for the SK model
(see [16]) for disorder with finite third moments to conclude that

|F (2)
N (g;A,B,C) − F

(3)
N (g;A,B,C)| ≤ KE0[g(Y, 0)3]√

N
.

Step 4 - Summary: We can use the triangle inequality and the estimates in steps 1 to steps 3,
combined with the fact that F (3)

N (g;A,B,C) = FN (β̄;A,B,C) to conclude the statement of the
result. □

As a consequence of Proposition A.1, we obtain the following universality result for pseudo
maximum likelihood estimation:
Proposition A.2 (Universality of the Ground State). If our model is well-scored, then∣∣Lg

N (A,B,C) − Lβ̄
N (A,B,C)

∣∣ = OL(N−1/2) + oL(1)

where OL(N−1/2) is a term that goes to 0 at rate N− 1
2 for every fixed L, oL(1) → 0 uniformly over

N and β̄ = (β1, β2, β3, β4) are the information paramters defined in (2.5), (2.6), (2.7), (2.8).
Proof. This follows from a direct application of the universality at finite temperatures and a careful
analysis of the dependencies of the error terms on the norms of g.

The proof is relatively simple consequence of Proposition A.1 since the Fisher score parameters
(2.5), (2.6), (2.7), (2.8) all scale linearly with scalar multiplication of g by the definition. This
implies that H β̄

N is homogeneous in β̄, i.e. HLβ̄
N = LH β̄

N .
By Proposition A.1 we have∣∣FN (Lg;A,B) − FN (β̄L;A,B)

∣∣ ≤ K(Lg, g0)√
N

,
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where K is a univeral constant that only depends on g and g0 and β̄L = Lβ̄. Then the bounds
in (A.3) implies that

|Lg
N (A,B) − Lβ̄

N (A,B)| ≤
∣∣ 1
L
FN (Lg) − 1

L
FN (Lβ̄)

∣∣+ oL(1) ≤ OL(N−1/2) + oL(1) .

Taking N to infinity, followed by L to infinity then gives the desired result. □

Appendix B. Variational Formula with Constrained Sample Mean

We now extend the earlier result with constrained overlaps in [37, Theorem 2.6] with an additional
sample mean constraint. However, in the maximum likelihood setting the signal x0 is fixed and
not random, so the technical details in this proof are simplified despite the inclusion of an extra
constraint. The case without a sample mean constraint, which will be required for regular models,
is a direct consequence of [37, Theorem 2.6] and will be stated at the end of this section.

By the universality results in Section A, it suffices to work solely with the effective log likelihood
given by the information parameters. We also introduce the ridge regression term which will
appeared in the corrected models.

H β̄,α
N (x) = β1√

N

∑
1≤i≤j≤N

gijxixj + β2
N

∑
1≤i≤j≤N

x0
ix

0
jxixj − β3

2N
∑

1≤i≤j≤N

x2
ix

2
j + α

N

∑
1≤i≤j≤N

xixj

(B.1)

= β1√
N

∑
ij

gijxixj + Nβ2
2 R2

10 − Nβ3
4 R2

11 + Nα

2 x̄2 + oN (1). (B.2)

Let ε > 0, we can define the associated constrained free entropy,

FN (β̄, α, ε;S,M, v) = 1
N

EY log
∫
1(Ωε(S,M, v))eHβ̄,α

N (x) dP⊗N
X (x)

where we defined the sets

AM = (M − ε,M + ε), BS = (S − ε, S + ε), Cv = (v − ε, v + ε),

and
Ωε(S,M, v) = {R10 ∈ AM , R11 ∈ BS , x̄ ∈ Cv} (B.3)

which implicitly depends on x0 through the constraint on R1,0. To simplify notation, we will often
keep the dependence on ε implicit.

The goal of this section is to prove a variational formula for this restricted model. Let ζ(t) be a
c.d.f, and let Φζ,µ,λ,ρ(t, y) is the solution to Parisi’s PDE{

∂tΦζ,µ,λ,ρ = −β2
1
4 (∂2

yΦζ + ζ([0, t])(∂yΦζ)2) (t, y) ∈ (0, S) × R
Φζ,µ,λ,ρ(S, y;x0) = log

∫
eyx+λxx0+µx2+ρx dPX(x)

. (B.4)

Define the Parisi functional

φβ̄(S,M, v) = inf
µ,λ,ρ,ζ

(
EQ[Φζ,µ,λ,ρ(0, 0;x0)] − β2

1
2

∫ S

0
tζ(t) dt− µS − λM − ρv + β2M

2

2 − β3S
2

4 + αv2

2

)
.

We will see that (R1,1, R1,0) asymptotically live in the closed subset C of [0, C2]×[−C2, C2]×[−C,C]
given by

C = ∩a,b,c∈[−1,1]3{(S,M, v) : EQ[essinfx{ax2+bxx0+cx}] ≤ aS+bM+cv ≤ EQ[esssupx{ax2+bxx0+cx}]}.
(B.5)

where C is the maximal point in the support of PX .
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Theorem B.1. For any β1, β2, β3 and α and constraints (S,M, v), we have

lim
ε→0

lim
N→∞

FN (β̄, α, ε;S,M, v) = φβ(S,M, v).

The proof will be split into two parts. We first begin with a proof of the upper bound of the
constrained free entropy. The following proofs are stated in terms of a quantity called the Ruelle
probability cascades [65, Chapter 2]. A quick summary of the notation is provided for convenience
in Appendix I.

Proposition B.1 (Large Deviation Upper Bound of the Free Energy). There exists a universal
finite constant L such that for every S,M, v ∈ C, and every real numbers µ, λ, ρ, we have

FN (β̄ : Ωε(S,M, v)) ≤ −λS − µM − ρv + 1
N

N∑
i=1

Φλ,µ,ζ(0, 0;x0
i ) − β2

1
2

∫ S

0
tζ(t) dt

+ β2
2 M

2 − β3
4 S

2 + α

2 v
2 + Lε(|µ| + |λ|) + oN,ε(1)

where Φλ,µ,ζ(0, 0;x0
i ) solves the afforementioned PDE (B.24) at parameter x0. Moreover oN,ε(1) =

O(ε) +O(N−1) is independent of λ, µ.

Proof. This proof follows from the classical Guerra interpolation argument and holds verbatim as
the one appearing in [37, Section 4]. There is an extra constraint parameter, but this is dealt by
introducing Lagrange multipliers for the sum

∑N
i=1 xi. One key difference is that the upper bound

is written in terms of the Ruelle probability cascades with an extra Lagrange multiplier parameter∑N
i=1 ρxi, but this representation is equivalent to (B.24) (see [65, Chapter 4]). □

We now claim that the upper bound is sharp in the sense that after one minimizes over the
parameters µ, λ, ρ, the upper bound is equal to the constrained integral.

For (λ, µ, ρ) ∈ R3, consider the annealed log Laplace transform

Λ(λ, µ, ρ) :=
∫ (

log
∫
eλx2+µxx0+ρx dPX(x)

)
dQ(x0)

and consider the rate function on R3 given by

I(S,M, v) = sup
(λ,µ,ρ)∈R2

{IS,M,v(λ, µ, ρ)}, with IS,M,v(λ, µ) = λS + µM + ρv − Λ(λ, µ) . (B.6)

This quantity gives the entropy of the set Ωε(S,M, v) under PX by [37, Proposition 5.3].

Lemma B.1 (Sharp Lower Bound). For (S,M, v) ∈ C and any ε, δ > 0 small enough,

lim
N→∞

1
N

EZ log
∑

α

vα

∫
Ωε(S,M,v)

e
∑

i≤N
β1Zi(α)xi dP⊗N

X (x)

≥ inf
µ,λ,ρ

(
− λS − µM − ρv + EZ,Q log

∑
α

vα

∫
eβ1Z(α)x+λx2+µxx0+ρx dPX(x)

)
. (B.7)

Moreover, the right hand side is equal to −∞ if I(S,M, v) = ∞. Furthermore, if S,M, v belong to
the interior of C, then the minimizer is attained at a unique µ and λ, such that |µ| + |λ| + |ρ| ≤
C(S,M, v) where the constant C only depends on the distance from (S,M, v) to the boundary.

Proof. A similar result is proved in [66, Section 7] and [37, Lemma 5.4]. We follow the proof of
Gartner-Ellis theorem [23, Theorem 2.3.6], taking into account the random density depending on
the Zi’s.
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We first show that we can restrict ourselves to (S,M, v) with finite entropy because the lower
bound in (B.7) is infinite otherwise. Indeed,

EZ log
∑

α

vα

∫
eβ1Z(α)x+λx2+µxx0+ρx dPX(x)

≤ EZ log
∑

α

vα

∫
eβ1|Z(α)|C + EQ log

∫
eλx2+µxx0+ρx dPX(x) ,

and E log
∑

α vαe
β1|Z(α)|C is bounded uniformly, so by the properties of the Ruelle probability

cascades,
Ee|

∑r

k=1(Q2
k−Q2

k−1)1/2zk|C < ∞
using the moment generating function for folded normals. Therefore there exists a finite constant
L such that

inf
µ,λ

(
− λS − µM − ρv + EZ,Q log

∑
α

vα

∫
eβ1Z(α)x+λx2+µxx0+ρx dPX(x)

)
≤ −I(S,M, v) + L.

Thus we may restrict to values of (S,M, v) with finite entropy.
We next adapt the Gartner-Ellis argument [23, Section 2.3] to our setting. It is based on a large

deviation upper bound for certain titled measures. Namely let λ, µ, ρ ∈ R3. We show for every
(S,M, v) ∈ [0, C2] × [−C2, C2] × [−C,C],

lim
N→∞

1
N

EZ,x0 log
∑

α vα
∫

Ωε(S,M,v) e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix
0
i +ρxi) dP⊗N

X (x)∑
α vα

∫
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix0
i +ρxi) dP⊗N

X (x)
≤ −Λ∗

λ,µ(S,M, v) +O(ε) , (B.8)
with

Λ∗
λ,µ(S,M) = −λS − µM − ρv + Λ(µ, λ) + sup

λ′,µ′,ρ′
{λ′S + µ′M + ρ′v − Λ(λ′, µ′, ρ′)} ,

where
Λ(λ, µ) = EZ,Q log

∑
α

vα

∫
eβ1Z(α)x+λx2+µxx0+ρx dPX(x) .

We denote in short Λ∗ = Λ∗
0,0,0. Indeed, (B.8) is a direct consequence of the fact that the vα are

non-negative, and almost surely we have∫
Ωε(S,M)

e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix
0
i +ρxi) dP⊗N

X (x)

≤ eN(λ−λ′)S+N(µ−µ′)M+N(ρ−ρ′)v+NO(ε)
∫
e
∑

i≤N
(β1Zi(α)xi+λ′x2

i +µ′xix
0
i +ρ′xi) dP⊗N

X (x) .

We next introduce the notion of exposed points: (S,M, v) is said to be exposed if and only if there
exists (λ, µ, ρ) such that for every (S′,M ′, v′) ̸= (S,M, v) we have
λS + µM + ρv − Λ∗(S,M, v) > λS′ + µM ′ + ρ′v − Λ∗(S′,M ′, v′) = −Λ∗

λ,µ,ρ(S′,M ′, v′) + Λ(0, 0, 0) .
(B.9)

The set (λ, µ, ρ) is called an exposing hyperplane. We first prove (B.8) for an exposed point
(S,M, v) with exposing hyperplane (λ, µ, ρ) by showing that the associated tilted measure puts
some mass on a neighborhood of (S,M, v), see (B.12). To see this, we first claim that for every
(S′,M ′, v′) ̸= (S,M, v),

Λ∗
λ,µ,ρ(S′,M ′, v′) = Λ∗(S′,M ′, v′) − (λS′ + µM ′ + ρv − Λ(µ, λ, ρ) + Λ(0, 0, 0))

≥ Λ∗(S′,M ′, v′) − (λ(S′ − S) + µ(M ′ −M) + ρ(v − v′) + Λ∗(S,M, v)) > 0
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Moreover, it is easy to see that Λ∗
λ,µ is a good rate function so that it achieves its minimum value

on the closure Ω̄ε(S,M, v)c of Ωε(S,M, v)c, hence infΩ̄ε(S,M,v)c Λ∗
λ,µ,ρ ≥ κ > 0. Moreover, we can

cover Ω̄ε(S,M, v)c by a union of finitely many balls (Bj)j≤K so that for each j ≤ K

lim
N→∞

1
N

EZ log
∑

α vα
∫

(R1,1,R1,0,x̄)∈Bj
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix
0
i +ρxi) dP⊗N

X (x)∑
α vα

∫
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix0
i +ρxi) dP⊗N

X (x)
≤ −κ+O(δ) . (B.10)

Therefore, there exists κ = κε > 0 such that

lim
N→∞

1
N

EZ log
∑

α vα
∫

Ω̄ε(S,M)c e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix
0
i +ρxi) dP⊗N

X (x)∑
α vα

∫
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix0
i +ρxi) dP⊗N

X (x)

≤ lim
N→∞

1
N

EZ log
∑
j≤K

∑
α vα

∫
Bj
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix
0
i +ρxi) dP⊗N

X (x)∑
α vα

∫
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix0
i +ρxi) dP⊗N

X (x)
≤ −κ , (B.11)

where in the last step we use Lemma I.3 to pull the sum outside of the logarithm. Applying Lemma
I.3 again, we conclude that

0 = lim
N→∞

1
N

EZ log
∑

α vα
∫
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix
0
i +ρxi) dP⊗N

X (x)∑
α vα

∫
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix0
i +ρxi) dP⊗N

X (x)

≤ max

 lim
N→∞

1
N

EZ log
∑

α vα
∫

Ωε(S,M) e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix
0
i +ρxi) dP⊗N

X (x)∑
α vα

∫
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix0
i +ρxi) dP⊗N

X (x)
,−κ+ δ


and therefore for δ small enough (depending on ε)

lim
N→∞

1
N

EZ log
∑

α vα
∫

Ωε(S,M,v) e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix
0
i +ρxi) dP⊗N

X (x)∑
α vα

∫
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix0
i +ρxi) dP⊗N

X

≥ 0. (B.12)

(B.7) then follows. Indeed, by Hölder’s inequality
1
N

EZ log
∑

α

vα

∫
Ωε(S,M,v)

e
∑

i≤N
β1Zi(α)xi dP⊗N

X (x)

≥ −λS − µM − ρv + 1
N

EZ log
∑

α

vα

∫
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix
0
i +ρxi dP⊗N

X (x) (B.13)

+ 1
N

EZ log
∑

α vα
∫

Ω̄ε(S,M) e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix
0
i +ρxi) dP⊗N

X (x)∑
α vα

∫
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix0
i +ρxi) dP⊗N

X

+O(ε). (B.14)

By weak convergence we also have that the absolute difference between
1
N

EZ log
∑

α

vα

∫
e
∑

i≤N
(β1Zi(α)xi+λx2

i +µxix
0
i +ρxi dP⊗N

X (x)

EZ,Q log
∑

α

vα

∫
e(β1Z(α)x+λx2+µxx0+ρxi dPX(x)

tends to zero as N → ∞. Hence, letting N go to infinity, δ to zero and then ε to zero we arrive
at the desired statement.

27



To conclude that the lower bound holds not only for exposed points we appeal to Rockafellar’s
lemma, see [23, Lemma 2.3.12], which shows that it suffices to prove that Λ is essentially smooth,
lower semi-continuous and convex. This follows as PX and Q are compactly supported. Conse-
quently, the relative interior of the set of points where Λ∗ is finite is included in the set of exposed
points, and so by our earlier reduction to points with finite entropy, the Lemma is proven. □

The rest of the proof of the lower bound can be adapted from [37]. The main difference is that
in our setting x0 is non-random, while in the Bayesian setting, there is a prior on x0. The current
setting with non-random x0 is actually much simpler, and can the lower bound can be proved using
the classical perturbations without localizing x0 around typical values. We sketch the key steps
below.

Proposition B.2 (Lower Bound of the Free Energy). For any real numbers β1, β2, β3, for any
(S,M, v) ∈ C, for any ε > 0, we have

lim
N→∞

FN (β̄, ε;S,M, v) ≥ φβ̄(S,M, v) +O(ε)

Proof. The key ideas of the proof is similar to the ones used to derive the lower bound of the
Sherrington–Kirkpatrick model. The approximation techniques used to deal with the random con-
straint set in [37] is also not needed in this setting, since x0 is fixed and non-random. We summarize
the key steps.

Step 1: We first introduce a perturbation of the likelihood function that will allow us to characterize
its limiting distribution. To introduce the perturbed Hamiltonian let us first fix the self-overlap by
setting

x̂ =
√
SN

∥x∥2
x (B.15)

The entries of x̂ are still uniformly bounded for x so that R1,1 = 1
N ∥x∥2

2 is at ε distance of S,
provided ε < S/2. Throughout D will denote such a uniform bound (which depends on S and C).
For p ≥ 1, consider

gp(x̂) = 1
Np/2

∑
i1,...,ip

gi1,...,ip x̂i1 · · · x̂ip ,

and the Gaussian process
g(x̂) =

∑
p≥1

2−pD−ptpgp(x̂) , (B.16)

where the gi1,...,ip are independent standard Gaussians and (tp)p≥1 is a sequence of parameters such
that tp ∈ [0, 3] for all p ≥ 1. Notice that the covariance is bounded

Eg(x̂1)g(x̂2) =
∑
p≥1

4−pD−2pt2p( 1
N

N∑
i=1

x̂1
i x̂

2
i )p ≤

∑
p≥1

4−pD−2pt2pD
2p ≤ 3 , (B.17)

where the first inequality uses R1,2 = 1
N

∑
x̂1

i x̂
2
i ≤ C2. For s > 0, we define the interpolating

Hamiltonian as
Hpert

N (x) = HSK
N (x) + sg(x̂). (B.18)

A key consequence is that under the perturbed likelihood function, samples from the posterior will
satisfy a concentration inequality called the Ghirlanda–Guerra identities.
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Theorem B.2 (Ghirlanda–Guerra Identities). Let R̂k,ℓ = 1
N

∑N
i=1 x̂

k
i x̂

ℓ
i . If s = Nγ for 1/4 < γ <

1/2, then

lim
N→∞

Eu

∣∣∣∣E⟨fR̂p
1,n+1⟩ − 1

n
E⟨f⟩E⟨R̂p

1,2⟩ − 1
n

n∑
ℓ=2

E⟨fR̂p
1,ℓ⟩
∣∣∣∣ = 0 ,

for any p ≥ 1, n ≥ 2 and bounded measurable function f of the n× n sub array of the overlaps.

Step 2: We now compute the limit by showing that the limit can be expressed as functions of
samples from the posterior, which we hav a limiting characterization of. This is commonly known
as the Aizenman–Sims–Starr scheme or cavity computations in statistical physics. We have for
every n ≥ 1,

lim
N→∞

FN (β̄, ε;S,M, v) ≥ lim
N→∞

1
n
E logZN+n − 1

N
E logZN ,

where
ZN =

∫
1(Ωε(S,M, v))eHβ̄,α

N (x) dP⊗N
X (x) .

Let (x,y) ∈ RN+n. We decompose HN+1 into terms that depend on the cavity coordinate x and
its bulk terms. Consider the following cavity fields defined with respect to the modified coordinates
x̂i =

√
(N + n)Sxi/∥x∥2 ( see (B.15)):

Hpert
N,n (x) :=

∑
1≤i<j≤N

β
Wij√

(N + n)
xixj + sgN (x̂), (B.19)

zi(x̂) = β√
N

N∑
j=1

Wj,N+ix̂j , (B.20)

y(x̂) =
√
nβ

N

∑
1≤i<j≤N

Wij x̂ix̂j . (B.21)

By matching the covariances, we can see that

HN+n(x,y) ≈
N∑

i=1
zi(x̂)ŷi +Hpert

N,n (x) ,

and
HN (x,y) ≈ y(x̂) +Hpert

N,n (x) ,
so

1
n
E logZN+n − 1

N
E logZN

≥ 1
n

(
E log

〈∫
1(|R1,1(y) − S| ≤ ε, |R1,0(y) −M | ≤ ε, |ȳ − v| ≤ ε)e

∑n

i=1 zi(x̂)yi dP⊗n
X (y)

〉pert

N,n

− E log
〈
ey(x̂)

〉pert

N,n

)
+ o(1) ,

where ⟨·⟩pert
N,n denotes the average with respect to Hpert

N,n (x). This lower bound can be approximated
by a continuous function of finitely many samples from ⟨⟩pert

N,n .

Lemma B.2 (Continuity of the Lower Bound with Respect to the Overlaps). Let ⟨·⟩ be the av-
erage with respect to some non-random Gibbs measure G on the sphere with radius

√
S in some
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Hilbert space H. Consider the Gaussian processes Z(σ) and Y (σ) indexed by points σ in H with
covariances

EZ(σ1)Z(σ2) = ⟨σ1,σ2⟩ EY (σ1)Y (σ2) = ⟨σ1,σ2⟩
2

Let n be a fixed integer number and (S,M) with finite entropy I so that there exists a finite constant
c independent of n and ε such that for n large enough, P⊗n

X (Ωε(S,M)) ≥ e−cn uniformly for all y0
with limiting empirical distribution Q. Then the functionals

fZ
n (S,M) = 1

n
EZ log

〈
∈ 1(|R1,1(y)−S| ≤ ε, |R1,0(y)−M | ≤ ε, |ȳ−v| ≤ ε)e

∑n

i=1 Zi(σ)yi dP⊗n
X (y)

〉
where Zi are independent copies of Z and

fY
n = 1

n
EZ log

〈
e

√
nβY (σ)

〉
,

are continuous functionals of the distribution of the overlap array (xℓ · xℓ′)ℓ,ℓ′≥1 under G⊗∞. In
particular, for any η > 0 there exists a finite integer number K(η) so that these functionals can
be approximated by a continuous function of the finite array (xℓ · xℓ′)1≤ℓ,ℓ′≤K(η) uniformly over all
possible choices of Gibbs measures G and all y0 limiting empirical distribution Q.

Step 3: We now identify the limit of this lower bound. Since R∞ satisfies the Ghirlanda–Guerra
identities, the distribution of the entire array is determined by ζ(t) = P(R∞

1,2 ≤ t) [65, Theorem 2.13
and Theorem 2.17]. We can approximate ζ(t) in L1 with a piecewise constant function µ(t), so that∫

|ζ(t) − µ(t)| dt < ε.

The density function µ of a measure can be encoded by the parameters
ζ−1 = 0 < ζ0 < · · · < ζr−1 , (B.22)

and sequence
0 = Q0 ≤ Q1 ≤ · · · ≤ Qr−1 ≤ Qr = S . (B.23)

That is, these sequences define the density function
µ(Q) = ζk for Qk ≤ Q < Qk+1 .

Let vα denote the weights of the Ruelle probability cascades corresponding to the sequence (B.22). If
(αℓ)ℓ≥1 are samples from the Ruelle probability cascades, then P(α1∧α2 ≤ t) = µ(t) by construction.
This gives us an explicit way to construct the off-diagonal entries of the overlap array in the limit.
We define Gaussian processes Z(α) and Y (α) with covariance

EZ(α1)Z(α2) = Qα1∧α2 EY (α1)Y (α2) = 1
2Q

2
α1∧α2

and let Zi for 1 ≤ i ≤ n denote independent copies of Z. The functionals

fZ
n (µ) = 1

n
E log

∑
α

vα

∫
1(|R1,1(y) − S| ≤ ε, |R1,0(y) −M | ≤ ε, |ȳ − v| ≤ ε)e

∑
i≤n

βZi(α)yi dP⊗n
X (y)

and
fY

n (µ) = 1
n
E log

∑
α

vαe
√

nβY (α) ,

are of the same form as the functionals in Lemma B.2 because they depend on the overlap ar-
ray in exactly the same way. Furthermore, one can show that they are Lipschitz continuous [65,
Lemma 4.1].
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Step 4: To remove the constraint and identity the limit with its matching upper bound, we can
apply Lemma B.1 to finish the proof. □

B.1. Simplification when α = 0. When α = 0, which corresponds to regular models, then the
variational formula can be expressed in a simpler form. When α = 0, the constraint on v is
unnecessary and we instead define{

∂tΦζ,µ,λ,0 = −β2
1
4 (∂2

yΦζ + ζ([0, t])(∂yΦζ)2) (t, y) ∈ (0, S) × R
Φζ,µ,λ,0(S, y;x0) = log

∫
eyx+λxx0+µx2

dPX(x)
. (B.24)

Define the Parisi functional

φβ̄(S,M) = inf
µ,λ,ζ

(
EQ[Φζ,µ,λ,0(0, 0;x0)] − β2

1
2

∫ S

0
tζ(t) dt− µS − λM + β2M

2

2 − β3S
2

4

)
. (B.25)

With a slight abuse of notation, we notice that φβ̄(S,M) and φβ̄(S,M, v) are almost identical, but
the former no longer depends on α, v, ρ. The next theorem shows that the maximum for regular
models converges to supφβ(S,M).

Theorem B.3. For any β1, β2, β3 and α and constraints (S,M, v), we have

lim
ε→0

lim
N→∞

FN (β̄, α, ε;S,M, v) = φβ(S,M, v).

If α = 0, then for any constraints (S,M) ∈ C

lim
ε→0

lim
N→∞

FN (β̄, 0, ε;S,M, v) = φβ(S,M)

Proof. This is a direct consequence of [37, Theorem 2.6]. One slight difference is that in the setting
of MLE, x0 is taken to be non-random while in the Bayesian setting x0 is drawn from some prior
P⊗N

∗ (x0). However, this is not an issue because the proof of [37] holds conditionally on a realization
of x0, and we can simply view x0 as a realization of a sample from the limiting measure Q. □

Appendix C. Gamma Convergence of Local Free Energies

In this section we show that the local quantities computed by taking the limit as N tends to
infinity of 1

NLF
L
N (Lβ̄, ε;S,M, v), are Γ convergent as L tends to infinity to ψβ̄(S,M, v). We prove

this result in the case when β4 = 0 to simplify notation, but note that in the case where β4 ̸= 0,
the modification is simple. We point out where the modifications are necessary as we go along.

We recall the following result in [37]. Let PX denote either normalized Lebesgue measure on
counting measure depending on if Ω is an interval or discrete. We consider the finite temperature
free energy given by:

FN (β) = lim
N→∞

1
N

E log
∫

ΩN
exp

 β1√
N

∑
ij

gijxixj + β2
N

∑
ij

x0
ix

0
jxixj − β3

2N
∑
ij

x2
ix

2
j

 dP⊗N
X ,

where x0
i are the entries of our rank one signal. Then F (β) can be computed by solving the

variational problem in Theorem B.3. defined by

lim
N→∞

FN (β̄) = F (β) = sup
(S,M)∈C

φβ̄(S,M)

where φ is defined in (B.25). In order to compute the limit of the pseudo MLE we must compute
the quantity:

lim
L→∞

Ex0∼Q
1
L
F (Lβ) ,
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and we shall do so by means of Γ convergence. For fixed 0 ≤ t ≤ S, h, y ∈ R we define functionals
FL(ζ, λ, µ) by:

FL,S(ζ, µ, λ; t, y, h) =
{

ΦL
ζ,λ,µ(t, y) if ζ = Lρ(t)dt

+∞ otherwise
,

where ΦL
ζ,λ,µ is the weak solution to the Parisi PDE:{

∂tΦ + β1
4 (∆Φ + Lρ(s)(∂yΦ)2) = 0

Φ(S, y) = 1
L log

∫
eL(yx+λxh+µx2)dPX(x) =: fL(y, λ, µ)

. (C.1)

In [45] , the authors showed the following theorem:

Theorem C.1. Fix t, y, h, then the sequence FL is Γ-convergent to the functional F . In particular
the following hold:

(1) (Γ − lim) For any sequence (ζL, λL, µL) → (ζ, λ, µ) we have the inequality:
lim

L→∞
FL(ζL, λL, µL; t, y, h) ≥ F (ζ, λ, µ; t, y, h) .

(2) (Γ − lim) For any (ζ, λ, µ) there is a recovery sequence, i.e, there is (ζL, λL, µL) → (ζ, λ, µ)
such that:

lim
L→∞

FL(ζL, λL, µL; t, y, h) = F (ζ, λ, µ; t, y, h) ,

and furthermore the recovery sequence (ζL, λL, µL) can be taken as (ζL, λ, µ) with ζL inde-
pendent of the choice of t, y, h.

Remark C.1. Theorem C.1 remains true if the additional Lagrange multiplier corresponding to
fixed magnetization v is added. Additionally the recovery sequence in the Γ-limsup condition can
still be taken to be (ζL, λ, µ, η) with ζL independent of the choice of h.

With this theorem in hand we may complete the proof of Γ-convergence to show Eh∼QFL →
Eh∼QF .

Lemma C.1. The functionals defined by EFL are Γ convergent to EF .

Proof. To prove the Γ lim inequality note that Theorem C.1 implies for every sequence (ζL, λL, µL) →
(ζ, λ, µ) one has Q almost surely that

lim
L

ΦζL,λL,µL
(t, y) ≥ Φζ,λ,µ(t, y) ,

and hence by Fatou’s lemma one has:
EF (ζ, λ, µ, t, y) = EQΦζ,λ,µ) ≤ EQ lim

L
ΦζL,λL,µL

≤ lim
L

EΦL
ζL,λL,µL

(t, y)

= lim
L

Eh∼Q FL(ζL, λL, µL, t, y, h) .

To prove the Γ lim inequality we note that part (b) of Theorem C.1 implies the recovery sequence
can be taken to be (ζL, λ, µ) with ζL independent of the realization of Q. Lastly, we note that
initial condition of (C.1) at finite L satisfies a uniform upper bound

fL(y, λ, µ, c) ≤ Cy +D ,

for some constants C,D > 0. Consequently if we define Φ̂L
ζL,λL,µL

(t, y) to be the solution to the
Parisi PDE with initial condition given by:

f̂(y) = max
y∈Ω

(Cy +D) ,
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then Q almost surely we have the pointwise bound:

ΦL
ζL,λ,µ(t, y) ≤ Φ̂L

ζL,λ,µ(t, y) .
Indeed, the Parisi PDE is monotonic in the initial condition as the difference to any two solutions
with different initial conditions solves a linear heat equation with non-negative first order term,
and solutions to the heat equation with non-negative initial values are non-negative for all time. It
is immediate to check the convergence

Φ̂L
ζL,λ,µ(t, y) → Φ̂ζ,λ,µ ,

where Φ̂ζ,λ,µ solves the zero temperature Parisi PDE with initial condition given by f̂(y). Conse-
quently the generalized dominated convergence theorem implies that

lim
L→∞

EQΦL
ζL,λ,µ(t, y) = Φζ,λ,µ(t, y) ,

which completes the proof. □

As a consequence of the Γ-convergence in Lemma C.1, we have that ψL converges to ψ point
wise on C. We will establish in Sections D and E that these quantities in fact converge uniformly.

We conclude this section by proving an appropriate upper semi-continuity statement

Lemma C.2. Suppose that (SL,ML, vL) → (S,M, v), with Ψ(S,M, v) > −∞. Then one has

lim ΨL(SL,ML, vL) ≤ Ψ(S,M, v) ,
and furthermore:

lim Ψ(SL,ML, vL) ≤ Ψ(S,M, v) .

Proof. For notation write AL = (SL,ML, vL), A = (S,M, v). By the assumption that Ψ(A) > −∞,
one has for any ε > 0 a pair (ζ, λ, µ, ρ) ∈ AS × R3 such that:

Ψ(A) + ε ≥ PA(ζ, λ, µ, ρ) .
(Here PA is the zero temp parisi functional, we will write PAL

for the finite temperature one
evaluated at AL. ).

In order to prove the result it will suffice to show the following, there is a sequence (ζL, λL, µL, ρL) ∈
ASL

× R3, such that
lim

L→∞
PAL

(ζL, λL, µL, ρL) = PA(ζ, λ, µ, ρ) .

We may take λL = λ, µL = µ and ρL = ρ, so it will simply suffice to construct a recovery sequence
ζL → ζ. Write ζ = m(t)dt+ cδS , then we have the following construction from [47, Lemma 2.1.2]

Lemma C.3. Define cL by:

cL =
{
c if ζ({S}) = c > 0
1
L otherwise

For L sufficiently large, there is qL ∈ (0,min(SL, S)) such that the following hold:
(1)

∫min(SL,S)
qL

m(t)dt+ cL = L(min(SL, S) − qL).
(2) qL → S.
(3) m(qL)/L ≤ 1.

The proof is the same as the one in [47].
With the sequence qL defined, we can now define ζL as follows:

ζL =
{

m(t)
L 0 ≤ t ≤ qL

1 qL < t < SL

,
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and immediately one has LζL → ζ. Now let Φ and ΦL denote solutions to the initial value problems:{
∂tΦL + β2

1
4 (ΦL

yy + LζL(s)(ΦL
y )2) = 0 (t, y) ∈ [0, SL] × R

ΦL(SL, y) = 1
L log

∫
eL(yx+λxh+µx2+ρx)dPX(x){

∂tΦ + β2
1
4 (Φyy +m(t)(Φy)2) = 0 (t, y) ∈ [0, S] × R

Φ(S, y) = maxx∈Ω(yx+ λxh+ µx2 + ρx)

We claim for any h ∈ R one has ΦL(0, 0) → Φ(0, 0). The claim is proven by following [45] Lemma
3.3 with a simple modification.

To finish the proof we proceed as follows. By construction we have that:
PAL

(ζL, λ, µ, ρ) → PA(ζ, λ, µ, ρ) ,
and hence by definition of ΦL one has:

lim
L→∞

ΦL(SL,ML, vL) ≤ lim PAL
(ζL, λ, µ, ρ) = PA(ζ, λ, µ, ρ) ≤ Ψ(S,M, v) + ε .

Since the inequality holds for any ε > 0 the result follows. □

Appendix D. Proof of Limit Formulas for Discrete Parameter Spaces

Throughout this section, we assume that the parameter space Ω = ΩK is discrete and supported
on exactly K ≥ 1 points. We define

CP = {(S,M, v) ∈ C | φ0(S,M, v) ≥ −P} ,
to denote the sets with entropy bounded below by P , here ψ0 is given by:

φ0(S,M, v) = lim
ε→0

lim
N→∞

1
N

log
∫
1(|R11 − S| ≤ ε)1(|R10 −M | ≤ ε)1(|x̄− v| ≤ ε) dPK(x)

= inf
λ,µ,ρ

(
EQ log

∫
eλx0x+µx2+ρx dPK(x) − λM − µS − ρv

)
,

where PX is the uniform measure on ΩK . We show Hölder continuity and equicontinuity for
discretized priors.

Lemma D.1. Suppose that Ω = ΩK is a finite collection distinct points. We have that for every
(S,M, v) ∈ C there exists a constant C, independent of N and L, such that for every L ≥ 1,

|FL
N (S,M, v; ε) − FL

N (S,M, v; η)| ≤ C
√
ε− η + C(ε− η).

In particular, the family of functions (FL
N (S,M, v))L is uniformly Hölder-1

2 on CP .

Proof. This proof follows the argument of [12, Lemma 7.3]. Furthermore, it suffices to prove the
result for the case that β2 = β3 = β4 = 0 since these terms are within an ε neighbourhood of
M,S, v respectively on Ωε. The deviations in these terms by changing ε is clearly Lipschitz.

Fix ε > η > 0 and let πx0 : Ωε(x0) → Ωη(x0) be the map that takes x to πx0(x) ∈ Ωη(x0) such
that the Euclidean distance, d(πx0(x), x), is minimized. As Ω is finite, this map is well-defined.
Furthermore, we can choose π(x) so that d(πx0(x), x) ≤ C

√
N(ε− η).

By Dudley’s entropy inequality, for any δ > 0 and constant there exists a constant C such that

E sup
d(x1,x2)≤δ

√
N

∥x1∥,∥x2∥≤| supp Ω|
√

N

|H β̄
N (x1) −H β̄

N (x2)| ≤ CNδ .

We have the chain of inequalities,

EFL
N (S,M, v; ε) = 1

NL
E log

∫
Ωε

eLHβ̄
N (x) dPK(x) ≤ 1

NL
E log

∫
Ωε

eLHβ̄
N (πx0 (x)) dPK(x) + C(ε− η)
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≤ 1
NL

E log
∫

Ωη

eLHβ̄
N (x)|(πx0)−1(x)| dPK(x) + C(ε− η)

≤ 1
NL

E log
∫

Ωη

eLHβ̄
N (x)|BR(x,x),R(x,x);ε−η(x)| dPK(x) + C(ε− η) .

To get from the second to third inequality, notice that for every x ∈ Ωη(x0), we have
(πx0)−1(x) = {y ∈ Ωε | πx0(y) = x} ⊆ BR(x,x),R(x,x;C(ε−η)(x)

where for parameters S,M
BS,M ;ε−η(x) = {y ∈ Ω | R(y,y) ≈ε−η S,R(x,y) ≈ε−η M} .

This follows because π was constructed so that d(π(y),x) ≤ C
√
N(ε − η) for points y ∈ Ωε and

x ∈ Ωη and B∥y∥,∥y∥;C(ε−η)(x) contains all points within C
√
N(ε − η) of y. More precisely, for

{y ∈ Ωε | πx0(y) = x},

|R(x, x) −R(y, y)| ≤ 1
N

⟨x− y, x+ y⟩ ≤ 1
N

√
∥x− y∥∥x+ y∥ ≤ C(ε− η) ,

and

|R(x, y) −R(y, y)| =
∣∣∣− 1

2R(x, x) +R(x, y) − 1
2R(y, y) + 1

2R(x, x) − 1
2R(y, y)

∣∣∣
≤ 1
N

∥x− y∥2 + 1
N

|∥x∥2 − ∥y∥2| ≤ C(ε− η) .

We conclude that

EFL
N (S,M, v; ε) − EFL

N (S,M, v; η) ≤ sup
y

( 1
NL

log |BR(x,x),R(x,x);ε−η(x)|
)

+ C(ε− η) .

It remains to find a uniform bound on the number of points in BR(y,y),R(y,y);C(ε−η)(y). Intuitively
this set is small since it requires the x and y to be almost perfectly correlated, which means that
this is essentially a constraint that the coordinates of x and y match. This is made precise by
computing the large deviations rate function of such an event.

Let Ey denote the average with respect to the empirical measure of y. In particular, we have
Ey[y2] = R(y,y). From the large deviations upper bound (see for example [37, Section 4]) it follows
that for any S and M and any λ, µ

lim
ε→0

lim
N→∞

1
NL

log |BS,M ;ε(y)| ≤ 1
L

(
Ey log

∑
x∈Ω

eλyx+µx2 −M − µS

)
,

where Ey is the average with respect to the empirical distribution of y. We may take µ = −1
2λ

then in the limit, we have that

lim
ε→0

lim
N→∞

1
NL

log |BS,M ;ε(y)| ≤ lim
λ→∞

1
L

(
Ey log

∑
x∈Ω

eλ(yx− 1
2 x2) −M + 1

2S
)
.

Since y ∈ Ω and

sup
x∈Ω

(
yx− 1

2x
2
)

= 1
2y

2 ,

if we take S = M = Ey2, then

lim
λ→0

(
λ

( 1
λ
Ey log

∑
x∈ΩK

eλ(yx− 1
2 x2)

)
− λ

1
2Ey

2
)

= lim
λ→0

(
λ

( 1
λ
Ey log

∑
x∈ΩK

eλ(yx− 1
2 x2)

)
− λ

1
2Ey

2
)

= 0 ,
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as a consequence of Laplace’s method. We conclude that

lim
ε→0

lim
N→∞

1
NL

log |BS,M ;ε(y)| ≤ 1
L

inf
µ,λ

(
Ey log

∑
x∈ΩK

eλyx+µx2 −M − µS

)
≤ 0 .

as required.
We now need to control this rate function in an ε ball around S = M = Ey2. Let ε > 0, and

notice that rate function satisfies the following bound
1
L

inf
µ,λ

(
Ey log

∑
x∈Ω

eλyx+µx2 −M − µS

)

≤ inf
λ

1
L

(
Ey log

∑
x∈Ω

eλ(yx− 1
2 x2) − λ

2 (R2
yy − ε)

)

= inf
λ

1
L

(
Ey log

∑
x∈Ω

eλ(yx− 1
2 x2)

eλy2/2 + Ey log eλy2/2 − λ

2 (R2
yy − ε)

)

= inf
λ

1
L

(
Ey log

∑
x∈ΩK

eλ(yx− 1
2 x2)

eλy2/2 + λ

2 ε
)
.

Since yx − 1
2x

2 is maximized at x = y ∈ Ω, and |x − y| ≥ C(Ω) for all x ̸= y and C(Ω) depends
only on the minimal distance of points in Ω, we have∑

x∈Ω

eλ(yx− 1
2 x2)

eλy2/2 = 1 +
∑

x ̸=y∈ΩK

eλ(yx− 1
2 x2)

eλy2/2 ≤ 1 +Ke−C(Ω)λ ,

where the constant K denotes the number of points in the support of Ω. Applying the inequality
log(1 + x) ≤ x implies that

inf
λ

1
L

(
Ey log

∑
x∈ΩK

eλ(yx− 1
2 x2)

eλy2/2 + λ

2 ε
)

≤ inf
λ

1
L

(Ke−Cλ + λ

2 ε) .

If we take ε ≤ 2KC then the function is convex and its minimum is attained at λ = − 1
C log(KCε

2 )

inf
λ

K

L
e−λC + λ

2Lε = K2C

2L ε− 1
2CL log(KCε2 ) ≤ K2C

2 ε− 1
2C log(KCε2 ) ,

which is Hölder 1/2 with Hölder constant independent of L. Therefore,

lim
N→∞

(
EFL

N (S,M, v; ε) − EFL
N (S,M, v; η)

)
≤ C(ε− η)1/2 + C(ε− η) . □

The previous Lemma immediately implies the following result:

Lemma D.2 (Equicontinuity). Let x0 be fixed and P > 0. The family of functions ( 1
LφLβ̄(S,M))L≥1

restricted to CP is uniformly Holder 1
2 continuous in L.

Proof. We can pick M1, S1, v1 and M2, S2, v2 are such that |M1−M2| ≤ δ ,|S1−S2| ≤ δ, |v1−v2| ≤ δ
and η < δ < 1

2 , then Lemma D.1 implies that

FL
N (S1,M1, v1; η) − FL

N (S2,M2, v2; η) ≤ FL
N (S2,M2, v2; 2δ) − FL

N (S2,M2, v2; η) ≤ |2δ − η|
1
2 .

By symmetry, we also have the reverse bound so

|fN (S1,M1, η) − fN (S2,M2, η)| ≤ |2δ − η|
1
2 .

36



Since
lim
ε→0

lim
N→∞

FL
N (S,M, ε) = 1

L
φK

Lβ̄
(S,M, v),

we can take N → ∞ followed by ε′ → 0 to conclude that∣∣∣ 1
L
φLβ̄(S1,M1v1) − 1

L
φLβ̄(S2,M2, v2)

∣∣∣ ≤ |2δ|
1
2 .

which completes the proof of equicontinuity. □

From the equicontinuity, we immediately get the following characterization of the ground state
of the proxy model.

Lemma D.3. If Ω is a finite collection of poits, then for any β̄ = (β1, β2, β3, β4),

lim
N→∞

E max
x∈ΩN

H β̄
N

N
= sup

(s,m,v)
ψβ̄(s,m, v)

Proof. We now prove the main variational formula for the MLE. We fix β̄ and define

ΨL(S,M, v) := 1
L
φLβ̄(S,Mv)

It suffices to show that:

sup
(S,M,v)∈C

ΨL(S,M, v) → sup
(S,M,v)∈C

Ψ(S,M, v) ,

We proceed as follows. For any η > 0, we may find a P ≥ 1 and a compact subset Ωη ⊂ CP ⊂
int(C) such that:

sup
(S,M,v)∈C

Ψ(S,M, v) ≤ sup
(S,M,v)∈Ωη

Ψ(S,M, v) + η ,

and by pointwise convergence of ΨL(S,M, v) in Lemma C.1 and equicontinuity on compact subsets
of the interior Lemma D.1 one has that:

sup
(S,M,v)∈Ωη

Ψ(S,M, v) = lim
L→∞

sup
(S,M,v)∈Ωη

ΨL(S,M, v) ,

from which it follows that:

sup
(S,M,v)∈C

Ψ(S,M, v) ≤ lim
L→∞

sup
(S,M,v)∈C

ΨL(S,M, v) .

In establishing the lower bound we will appeal to Lemma C.1. For each L > 0 we may find a
point (SL,ML, vL) such that:

sup
(S,M,v)∈C

ΨL(S,M, v) ≤ ΨL(SL,ML, vL) + 1
L
,

since C is compact we may extract a convergent subsequence (SL′ ,ML′ , vL′) converging to some
point (S,M, v) in C. By assumption on the sequence (SL,ML, vL) one has that Ψ(S,M, v) > −∞,
and hence Lemma C.1 implies that:

lim
L→∞

sup
(S,M,v)∈C

ΨL(S,M, v) ≤ lim
L→∞

ΨL(SL,ML, vL) ≤ Ψ(S,M, v) ≤ sup
(S,M,v)∈C

ΨL(S,M, v) .

Concluding the proof. □
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Appendix E. Proof of Limit Formulas for Continuous Parameter Spaces

Throughout this section, we assume that the parameter space Ω an interval. Since Ω is an interval,
we can define Ω(S,M, v) = Ω0(S,M, v) to denote the set of constrained norm, overlap, and mag-
netization. We begin by establishing Hölder continuity of the maximum of the Hamiltonian HN

N on
bands with fixed norm, overlap, and magnetization.

Lemma E.1. Suppose that Ω = [a, b], and that (S,M, v) and (S′,M ′, v′) belong to C, then:∣∣∣∣∣E max
x∈Ω(S,M,v)

1
N
HN (x) − E max

x∈Ω(S′,M ′,v′)

1
N
HN (x)

∣∣∣∣∣ ≤ f(S − S′,M −M ′, v − v′) + o(1) ,

for f a 1
2 -Hölder continuous function, independent of N .

Proof. We write y for the latent vector throughout to simplify notation. We assume further that
y is not a constant vector, and that the empirical distribution of y converges to a non-trivial
distribution.

We proceed as follows, given the constraints on the vector x, let us define vectors e1, e2 ∈ RN as
follows:

e1 = y

∥y∥
and e2 = 1 − e1⟨e1,1⟩√

N −N2 (y)2

∥y∥2

.

(Note that in the case y is a vector with constant entries, one has e2 = 0, and the calculations that
follow simplify greatly.) Given x ∈ Ω(S,M, v) we may then write:

x = α(x)e1 + β(x)e2 + w(x) ,
with w(x) orthogonal to e1 and e2. A direct computation yields:

α(x) = NM

∥y∥

β(x) =
Nv − N2yM

∥y∥2√
N − N2(y)2

∥y∥2

∥w(x)∥2 = NS − N2M2

∥y∥2 −
(Nv − N2yM

∥y∥2 )2

N − N2(y)2

∥y∥2

.

Note that by definition of Ω(S,M, v) the functions α(x), β(x) are constant when fixing overlaps
and sample means. Consequently, we may define x′ ∈ Ω(S′,M ′, v′) as follows:

x′ = NM ′

∥y∥
e1 +

Nv′ − N2y

∥y∥2M
′√

N −N2 y2

∥y∥2

+ w(x′) ,

where w(x′) is chosen to be collinear with w(x), and such that the norm squared of x′ is NS′. By
Collinearity of w(x) and w(x′) one may then compute:

1
N

∥∥x− x′∥∥2 = N

∥y∥2 (M −M ′)2 +
((v − v′) + y N

∥y∥2 (M ′ −M))2

1 − N(y)2

∥y∥2

+
[√√√√√S − NM2

∥y∥2 −
(v − Ny

∥y∥2M)2

1 − Ny

∥y∥2

−

√√√√√S′ − N(M ′)2

∥y∥2 −
(v′ − Ny

∥y∥2M ′)2

1 − Ny

∥y∥2

]2

.
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By our assumptions on the empirical distribution of y, the terms N
∥y∥2 converge to a non-zero

constant as N → ∞, as does y. By the non-triviality assumption of the limit, and the Cauchy-
Schwarz inequality, one also has some universal constant c1 > 0 so that for all N sufficiently large

1 −N
y2

∥y∥2 > c1 .

With this in mind let us then note that for some 1
2 -Hölder function f , we have a bound for all large

N given by: ∥∥x− x′∥∥ ≤
√
Nf(S − S′,M −M ′, v − v′) ,

which satisfies f(0, 0, 0) = 0.
To finish the proof, note for C > 0 sufficiently large we have c > 0 so that with probability

1 − e−cN one has:
|HN (x1) −HN (x2)| ≤ C

√
N ∥x1 − x2∥ .

Indeed this follows by standard bounds on the operator norm of a GOE matrix exceeding 2 + ε
(see [6] Theorem 2.3.5), and by noting the non-random terms in HN are C

√
N Lipschitz, for some

C > 0 depending on Ω and β.
Now given x ∈ Ω(S,M, v), one may always pair it with the constructed x′ above to obtain

max
x∈Ω(S,M,v)

1
N
HN (x) ≤ Cf(S − S′,M −M ′, v − v′) + max

x∈Ω(S′,M ′,v′)

1
N
HN (x) ,

with the reverse inequality following via symmetric argument. Taking expectations and absorbing
C into f , we conclude for some c > 0 that∣∣∣∣∣E max

x∈Ω(S,M,v)

1
N
HN (x) − E max

x∈Ω(S′,M ′,v′)

1
N
HN (x)

∣∣∣∣∣ ≤ f(S − S′,M −M ′, v − v′) + e−cN .

Completing the proof. □

With Lemma E.1 we may now prove the variational characterization of the ground state for the
proxy model.

Lemma E.2. Suppose that Ω = [a, b] is an interval, then for any β̄ = (β1, β2, β3, β4),

lim
N→∞

E max
x∈ΩN

H β̄
N

N
= sup

(s,m,v)∈C
ψβ̄(s,m, v)

Proof. Define ψN,β̄ by

ψN,β̄(s,m, v) := E max
Ω(s,m,v)

H β̄
N (x)
N

.

By Lemma C.1, we have that ψN,β̄ → ψβ̄ pointwise as N tends to infinity. To conclude the result
it will suffice to show that ψN,β̄ converges uniformly to ψβ̄ on C, as uniform convergence implies
convergence of the maximum.

Fix ε > 0, then if f is as in Lemma E.1, we may pick δ > 0 so that
f(S − S′,M −M ′, v − v′) ≤ ε

whenever d((s,m, v), (s′,m′, v′)) ≤ δ.
Let Cδ be a δ-net of C, so that for each (s,m, v) in C there is (s′,m′, v′) in Cδ such that

d((s,m, v), (s′,m′, v′)) ≤ δ. We suppose thatN is large enough so that the error e−cN in Lemma E.1,
is at most ε. One then has:

|ψN,β̄(s,m, v) − ψN,β̄(s′,m′, v′)| ≤ 2ε . (E.1)
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Since Cδ has finitely many points (depending on δ), there exists a Nδ such that if N > Nδ, then

max
(s,m,v)∈Cδ

|ψN,β̄(s,m, v) − ψβ̄(s,m, v)| ≤ ε . (E.2)

Lastly, note that pointwise convergence of ψN,β̄ to ψβ̄, and Lemma E.1 imply for every pair (s,m, v)
and (s′,m′, v′) in C that:∣∣∣ψβ̄(s,m, v) + ψβ̄(s′,m′, v′)

∣∣∣ ≤ f(s− s′,m−m′, v − v′) . (E.3)

Combining the estimates in (E.1), (E.2), and (E.3), via the triangle inequality, we conclude that
there is N0 such that if N > N0 then:

sup
(s,m,v)∈C

∣∣∣ψN,β̄(s,m, v) − ψβ̄(s,m, v)
∣∣∣ ≤ 4ε ,

and hence ψN,β̄ converges uniformly to ψβ̄.
Recalling the concentration of the maximum of the Hamiltonian in Lemma G.1, we have that

lim
N→∞

E max
x∈ΩN

H β̄
N

N
= max

s,m,v
lim

N→∞
ψN,β̄(s,m, v) = max

s,m,v
ψβ̄(s,m, v) ,

which concludes the proof. □

Appendix F. Proofs of Variational Formulas

In this section, we will prove the variational formulas for the zero score, score biased, and score
corrected models. By universality in Proposition A.2, all of these variational formulas are direct
consequences of the master theorem for the proxy model which is summarized below.

Theorem F.1. Suppose that Ω is an interval or finite collection of points. For any β1, β2, β3, β4
and α and constraints (S,M, v), we have

lim
ε→0

lim
N→∞

1
N

E max
x∈ΩN

H β̄,β4

N (x) = sup
S,M,v

ψβ(S,M, v) (F.1)

and

lim
ε→0

lim
N→∞

1
N

E max
x∈Ωε(S,M,v)

H β̄,β4

N (x) = ψβ(S,M, v). (F.2)

If α = 0, then for any constraints (S,M) ∈ C

lim
ε→0

lim
N→∞

1
N

E max
x∈ΩN

H β̄,0
N (x) = sup

S,M
ψβ(S,M) (F.3)

and

lim
ε→0

lim
N→∞

1
N

E max
x∈Ωε(S,M)

H β̄,0
N (x) = ψβ(S,M). (F.4)

Proof. We provide the proof for the cases when α ̸= 0, because the case when α = 0 follows from an
identical argument. The limit for the unconstained maxima is given in Lemma D.3 for the discrete
parameter space and Lemma E.2. The limit for the constrained model is given in Lemma G.2. □

40



F.1. Proof of the Variational Formula for the Score Biased Models. By universality, we
start by showing that the maximum liklihood estimate associated with the score corrected likelihood

Lg
N,α(Y, x) =

∑
i≤j

g
(
Yij ,

λxixj√
N

)
.

is equivalent to H β̄,α
N (x) where β1, β2, β3 are the information parameters and α = N1/2β4 defined

in (B.1).

Lemma F.1. For g, g0 ∈ F0, we have

lim
N→∞

∣∣∣∣ 1
N

E max
x∈ΩN

Lg
N,α(Y, x) − 1

N
E max

x∈ΩN

H β̄,N
1
2 β4

N (x)
∣∣∣∣ = 0.

Proof. This is a restatement of Lemma A.1, which shows that the pseudo maximum likelihood is
equal to the maximizer of (A.1). □

In particular, it suffices to study the maximizers of the function

H β̄,N
1
2 β4

N (x) = β1√
N

∑
ij

gijxixj + Nβ2
2 R2

10 − Nβ3
4 R2

11 + N3/2β4
2 x̄2 + oN (1). (F.5)

Notice that the last term N3/2β4
2 x̄2 is the leading order term. This leading order term does not

depend on the unknown variable, but dictates the performance of the MLE. If β4 > 0, then the
estimator must maximize this term, which is the statement of Theorem 2.3.

Proof of Theorem 2.3. If β4 > 0, notice that H β̄,N
1
2 β4

N (x) is maximized when (x̄)2 is maximized. In
particular, we have that x = x+1, where 1 is the all 1’s vector and x+ was the largest point in
Ω. □

If β4 < 0, then the estimator must minimize the leading order term in (F.5), which is the
conclusion of Theorem 2.4

Proof of Theorem 2.4. If β4 < 0, notice that H β̄,N
1
2 β4

N (x) is maximized when (x̄)2 is minimized. In
particular, we have that x = x−, where x− is the smallest point in the convex hull of Ω. Note
however that x− may not lie within ΩN , but up to introducing a term of order C

N for some C > 0,
we may assume it does. Taking εN = C

N for a large constant C, we then have with probability at
least 1 − e−cN that:

| max
x∈ΩN

H β̄,N
1
2 β4

N (x) − max
x∈Ω:x̄≈εN

x−
H β̄,N

1
2 β4

N (x)| ≤ C ′
√
N
,

where the bound above comes from tail bounds on the operator norm of a GOE matrix, see [6].
We now maximize the constrained maximization problems

max
x∈Ω:x̄≈x−

H β̄,N
1
2 β4

N (x) = sup
S,M∈C

max
,R11≈S,R10≈M,x̄≈x−

H β̄,N
1
2 β4

N (x) .

Subtracting the leading order term and taking limits implies that

lim
ε→0

lim
N→∞

max
x∈ΩN

1
N

(
H β̄,N

1
2 β4

N (x) − N3/2β4
2 x̄2

)
= lim

ε→0
lim

N→∞
sup

S,M∈C
max

,R11≈S,R10≈Mx̄=x−

1
N

(
H β̄,N

1
2 β4

N (x) − N3/2β4
2 x̄2

)
= lim

ε→0
lim

N→∞
sup

S,M∈C
max

R11≈S,R10≈M,x̄=x−

1
N
H β̄,0

N (x)
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= sup
S,M∈C

ψ−(S,M, x−) .

where the last equality follows from (F.2) and concentration of the ground state Lemma G.1. □

F.2. Proof of the Variational Formula for the Score Corrected Model. We prove The-
orem 2.5. We start by showing that the maximum liklihood estimate associated with the score
corrected likelihood

Lg
N,α(Y, x) =

∑
i≤j

g
(
Yij ,

λxixj√
N

)
−N

3
2 β̂4x̄

2 +Nαx̄2.

is equivalent to H β̄,α
N (x) where β1, β2, β3 are the information parameters and α = β2[EQx0]2 + α

defined in (B.1).

Lemma F.2. For g, g0 ∈ F0, we have

lim
N→∞

∣∣∣∣ 1
N

E max
x∈ΩN

Lg
N,α(Y, x) − 1

N
E max

x∈ΩN

H β̄,α
N (x)

∣∣∣∣ = 0 .

Proof. We define
β̂4 = 1

N2

∑
ij

∂wg(Yij , 0) ,

which approximates

Eβ̂4 = 1
N2

∑
ij

E∂wg(Yij , 0) = E[∂wg(Y, 0)] = β4 + β2√
N

( 1
N

∑
i

x0
i

)2
+O(N−1) .

This is not an immediate consequence of universality (Proposition A.2) because β̂4 depends on all
entries of Y . We will show that we can replace β̂4 with its expected value. We define the likelihood

L̄g
N,α(Y, x) =

∑
i≤j

g
(
Yij ,

λxixj√
N

)
−N

3
2E[β̂4]x̄2 +Nαx̄2 ,

which replaces β̂4 in L̄g
N,α(Y, x) with its expected value. We will prove that∣∣∣∣ 1

N
E max

x∈ΩN

Lg
N,α(Y, x; ) − 1

N
E max

x∈ΩN

L̄g
N,α(Y, x)

∣∣∣∣ ≤ O(N− 1
2 ) .

By Jensen’s inequality, it suffices to show that

E
∣∣∣∣ 1
N

max
x∈ΩN

Lg
N,α(Y, x) − 1

N
max
x∈ΩN

L̄g
N,α(Y, x)

∣∣∣∣ ≤ O(N− 1
2 ) .

We make use of the obvious inequality that if f(x) ≥ g(x) or g(x) ≥ f(x), then
| max f(x) − max g(x)| = max(max g(x) − max f(x),max f(x) − max g(x)) ≤ max |f(x) − g(x)| ,

to conclude that∣∣∣∣ 1
N

E max
x∈ΩN

Lg
N,α(Y, x) − 1

N
E max

x∈ΩN

L̄g
N,α(Y, x)

∣∣∣∣ ≤
√
NE

∣∣∣∣ max
x∈ΩN

|β̂4 − Eβ̂4|(x̄)2
∣∣∣∣ .

Since Ω is bounded by C, we have

E
∣∣∣∣ 1
N

max
x∈ΩN

Lg
N,α(Y, x) − 1

N
max
x∈ΩN

L̄g
N,α(Y, x)

∣∣∣∣ ≤ C
√
NE|β̂4 − Eβ̂4| ≤ C

√
N(E(β̂4 − Eβ̂4)2)1/2 .

We have

β̂4 − Eβ̂4 = 1
N2

N∑
i,j=1

[∂wg(Yij , 0) − E∂wg(Yij , 0)] ,
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which has variance

Var(β̂4 − Eβ̂4) = 1
N4

N∑
i,j=1

E[∂wg(Yij , 0) − E∂wg(Yij , 0)]2 = O(N−2) ,

since g ∈ F0 we have that Var([∂wg(Yij , 0) − E∂wg(Yij , 0)]) is uniformly bounded for all i, j inde-
pendent of N . This bound implies that

E
∣∣∣∣ 1
N

max
x∈ΩN

Lg
N,α(Y, x) − 1

N
max
x∈ΩN

L̄g
N,α(Y, x)

∣∣∣∣ ≤
√
N(E(β̂4 − Eβ̂4)2)1/2 = O(N−1/2) .

By Proposition A.2 applied to L̄g
N,α(Y, x) we conclude that

lim
N→∞

∣∣∣∣E 1
N

max
x∈ΩN

L̄g
N,α(Y, x) − 1

N
E max

x∈ΩN

H β̄,α
N (x)

∣∣∣∣ = 0 .

□

Theorem 2.5 now follows by applying the variational formulas in Theorem F.1 to H β̄,α
N (x).

Proof of Theorem 2.5. By Lemma F.2, it suffices to compute the limit of
1
N

E max
x∈ΩN

H β̄,α
N (x) .

The maximum of such functions are precisely the one computed in (F.1), so

E
1
N

max
x∈ΩN

L̄g
N,α(Y, x) → sup

(S,M,v)
ψβ̄,α(S,M, v) .

□

F.3. Proof of the Variational Formula for the Zero Score Model. For completeness, we also
provide the proof for zero score models, which follows from a simple modification of the previous
arguments for score biased score models.

Proof of Theorem 2.1. By Lemma A.2, it suffices to compute the limit of
1
N

E max
x∈ΩN

H β̄,α
N (x) .

The maximum of such functions are precisely the one computed in (F.3), so

E
1
N

max
x∈ΩN

L̄g
N,α(Y, x) → sup

(S,M,v)
ψβ̄,α(S,M, v) .

□

Appendix G. Characterizations of the Overlaps for MLE

In this section, we will prove the second part of Theorem 2.1, Theorem 2.4, and Theorem 2.5.
Throughout this section, for any two vectors x ∈ RN and y ∈ RN , we define

R(x,y) = 1
N

N∑
i=1

xiyi ,

to denote its normalized inner product. Similarly, we define

x̄ = 1
N

N∑
i=1

xi ,

43



to denote the sample mean of x. For fixed S and M , to simplify notation we define

ψβ̄(S,M) =
{

supv ψβ̄,α(S,M, v) if α ̸= 0
ψβ̄,0(S,M) if α = 0.

We show that the limiting overlaps of the ground state variational formula are given by the
corresponding maximizers of the ground state free energy provided the maximizers are unique. In
the case the maximizers are not unique, the limits of the overlaps converge to one of the maximizers
of ψ, and will be dealt with separately at the end of this section.

This hypothesis ensures that a notion of the limiting overlap R(x̂MLE,x0) is well defined, since in
general x̂MLE may not unique, so its normalized inner product with x0 may depend on the choice
of maximizer. We show that under some uniqueness assumptions, the normalized inner products
of an equivalent model encoded by the information parameters β̄ can only take one value.

Assumption 2. Given β̄, suppose that ψβ̄(s,m) has unique maximizers s∗,m∗ up to a sign. More
precisely, this implies that ψβ̄(s,m) can have at most 2 maximizers, (s∗,±m∗). In particular, we
have that (s∗,m

2
∗) is unique.

This assumption will imply that the maximum likelihood estimator is well defined in the following
sense. Recall the restricted parameter space in (G.1), we define

Ωε(S,M) = {R10 ∈ AM , R11 ∈ BS}. (G.1)

Suppose that there exists a unique (s∗,m∗) such that all maximizers of H β̄
N (x) are attained on the

set Ωε(s∗,m∗)
max

x
H β̄

N (x) = max
s,m

max
Ωε(s,m)

H β̄
N (x) = max

Ωε(s∗,m∗)
H β̄

N (x).

If this holds, then
x̂mis = arg max

x
Hβ

N (x)

satisfies R(x̂MLE,x0) ≈ε m∗, R(x̂MLE, x̂MLE) ≈ε s∗. In particular, any maximizer of Hβ
N (x) maxi-

mizes the overlap with the underlying signal. The rest of this section will be devoted to show that
the maximizing m∗ is given by the largest maximizer of ψβ̄, for models such that the Fisher score
parameters β̄ satisfy (2).

We begin by showing a concentration result that implies that we can consider the average overlaps.

Lemma G.1. Let β be fixed. There exists a universal constant C that depends only on β̄ such that

P
(∣∣∣ 1
N

max
Ωε(S,M)

H β̄
N (x) − E

1
N

max
Ωε(S,M)

H β̄
N (x)

∣∣∣ ≥ t
)

≤ e−Ct2N ,

for any (s,m) ∈ C. Furthermore,

E
∣∣∣∣ 1
N

max
Ωε(s,m)

H β̄
N (x) − 1

N
E max

Ωε(s,m)
H β̄

N (x)
∣∣∣∣ ≤ C√

N
.

Proof. Notice that supΩε(S,M) |HN (x)| is almost surely finite, and

sup
Ωε(S,M)

Var(HN (x)) ≤ NS ≤ NC2

where C is the maximal point in Ω. By the Borrell–TIS inequality [3, Section 2.1], it follows that

P
(∣∣∣ 1
N

max
Ωε(S,M)

HN (x) − E
1
N

max
Ωε(S,M)

HN (x)
∣∣∣ ≥ t

)
≤ e−Ct2N .

This immediately implies the L1 bound by integrating the tail see [65, Theorem 1.2]. □
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We now show that the limit of the constrained proxy maximization problem is given by ψβ̄(s,m).

Lemma G.2. For any (s,m) ∈ C

lim
ε→0

lim
N→∞

1
N

E max
Ωε(s,m)

H β̄
N (x) = ψβ̄(s,m).

Proof. Let ε > 0. We consider the constrained free energy
1
L
FLβ̄

N (s,m) = 1
NL

E log
∫
1(R10 ≈ m,R11 ≈ s)eLHβ̄

N (x) dP⊗N
X (x).

Without loss of generality, we may assume that PX is uniform over ΩN .
Using the bounds of the ground state with the free energy (A.3), we have

1
N

E max
Ωε(s,m)

H β̄
N (x) + oN (L) ≤ 1

L
FLβ̄

N (s,m) ≤ 1
N

E max
Ωε(s,m)

H β̄
N (x) .

Therefore, it suffices to compute a limit of 1
LF

Lβ̄
N (s,m) for large N and fixed L.

For every L, we have as N → ∞ by the finite temperature case that

lim
ε→0

lim
N→∞

1
L
FLβ̄

N (s,m) = φLβ̄(s,m) .

By applying Lemma C.1, we conclude that

lim
L→∞

lim
ε→0

lim
N→∞

1
L
FLβ̄

N (s,m) = lim
L→∞

φLβ̄(s,m) = ψβ̄(s,m).

Therefore, using the ground state bounds (A.3) we have

lim
ε→0

lim
N→∞

1
N

E max
Ωε(s,m)

H β̄
N (x) = ψβ̄(s,m) ,

which is what we needed to show. □

It now remains to show that the proxy model characterizes the maximum likelihood estimator
of the original inference problem. To this end, given a model g and the corresponding Fisher score
parameters β̄, we define

x̂g
PMLE = arg max

x∈ΩN

∑
i≤j

g
(
Yij ,

xixj√
N

)
, .

as was defined in (2.2). The following Lemma is a universality statement for the overlaps of the
ground state.

Lemma G.3. If the Fisher score parameters β̄ corresponding to g ∈ F0 satisfies Hypothesis 2,then
for any choice of maximizer x̂g

PMLE one has almost surely

lim
N→∞

R(x̂g
PMLE,x0)2 = lim

N→∞
R(x̂β̄

PMLE,x0)2 = (m∗)2 ,

and
lim

N→∞
R(x̂g

PMLE, x̂
g
PMLE) = lim

N→∞
R(x̂β̄

PMLE, x̂
β̄
PMLE) = s∗ ,

where (s∗, (m∗)2) is the maximizing pair of ψβ̄ given in Hypothesis 2.

Proof. From the universality of the restricted free energies Proposition A.2. We know that uniformly
for s and m, ∣∣∣∣ 1LFLβ̄

N (s,m) − 1
L
FLg

N (s,m)
∣∣∣∣ ≤ oN (L).

Furthermore, we have using the finite temperature formulas in Theorem B.3 that

lim
N→∞

1
L
FLg

N (s,m) = lim
N→∞

1
L
FLβ̄

N (s,m) = lim
N→∞

1
L
φβ̄(s,m) , (G.2)
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and so by (F.2) we obtain

lim
L→∞

lim
ε→0

1
L
FLg

N (s,m) = lim
L→∞

lim
ε→0

lim
N→∞

1
L
FLβ̄

N (s,m) = lim
ε→0

lim
N→∞

1
N

E max
Ωε(s,m)

H β̄
N (x) = ψβ̄(s,m).

(G.3)
An identical argument using the unconstrained limit of Theorem B.3 and (F.1) implies that

lim
L→∞

lim
ε→0

lim
N→∞

1
L
FLg

N = lim
ε→0

lim
N→∞

1
N

Emax
x

H β̄
N (x) = sup

s,m
ψβ̄(s,m).

The following is where Hypothesis 2 plays its most crucial role. Since the square of the maximizers
of ψβ̄(s,m) are unique, we have for all m2 ̸= m2

∗,

ψβ̄(s,m) < ψβ̄(s∗,m∗).

Furthermore, since ψβ̄(s,m) only depends on m through m2, we have for the case that m2 = m2
∗

that
ψβ̄(s,m) = ψβ̄(s∗,m∗).

Using the characterization in (F.2), this implies that for all s,m such that m2 ̸= m2
∗

lim
ε→0

lim
N→∞

1
N

E max
Ωε(s,m)

H β̄
N (x) < lim

ε→0
lim

N→∞

1
N

E max
Ωε(s∗,m∗)

H β̄
N (x) ,

where equality is attained when m2 = m2
∗. By partitioning our state space, we have that

1
N

Emax
x

H β̄
N (x) = 1

N
Emax

s,m
max

Ωε(s,m)
H β̄

N (x) ,

and concentration in Lemma G.1 implies that for every ε > 0,

lim
N→∞

1
N

Emax
s,m

max
Ωε(s,m)

H β̄
N (x) = lim

N→∞

1
N

max
s,m

E max
Ωε(s,m)

H β̄
N (x) .

Taking limits and applying (F.2) and (G.2), (G.3) implies

lim
ε→0

lim
N→∞

1
N

Emax
x

Hg
N (x) = lim

ε→0
lim

N→∞

1
N

Emax
x

H β̄
N (x) = lim

ε→0
lim

N→∞

1
N

E max
Ωε(s∗,m∗)

H β̄
N (x) = ψβ̄(s∗,m∗).

The latter implies that the maximum is attained on the set Ωε(s,m), which implies that

R(x̂g
PMLE,x0)2 = R(x̂β̄

PMLE,x0)2 = (m∗)2,

where m∗ is the largest maximizer of ψβ̄(s,m) and

R(x̂g
PMLE, x̂

g
MLE) = R(x̂β̄

PMLE, x̂
β̄
PMLE) = s∗ .

□

Combining all of the above implies the following lemma which characterizes the cosine similarity
and mean squared error in the high dimensional limit.

Lemma G.4. If our model and associated Fisher parameters β̄g satisfy Hypothesis 2, we have

|CS(x̂MLE,x0)| → |mβ1,β2,β3 |
√
sβ1,β2,β3

√
EQ(x0)2

a.s.

where mβ1,β2,β3 is the largest maximizer of sup(s,m)∈C ψβ̄(s,m).
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Proof. This follows immediately from the characterization of the normalized inner products in
Lemma G.3 and the fact that the mean squared error and cosine similarity are determined by the
normalized inner products.

Indeed, notice that

CS(x̂MLE,x0) = R(x̂MLE,x0)√
R(x̂MLE, x̂g

MLE)R(x0,x0)
,

and furthermore, Lemma G.3 implies that
|R(x̂MLE,x0)| → |m∗| and R(x̂MLE, x̂g

MLE) → s∗ ,

which finishes the proof. □

We close this section by arguing that the technical assumption Hypothesis 2 is equivalent to a
regularity condition on ψβ̄ with respect to its information parameters. In particular, we will show
that the overlaps of the proxy problem are uniquely characterized by the maximizers of ψβ̄ on the
sets where ψβ̄ is differentiable. Consider the function

f(β1, β2, β3) = sup
s,m

ψβ̄(S,M) ,

and define the set
Dβ2 = {(β1, β2, β3) | ∂β2f exists} and Dβ3 = {(β1, β2, β3) | ∂β3f exists} .

We show that the characterization of the overlap for the proxy model is valid at points where
f(β1, β2, β3) is differentiable.

Lemma G.5. We have for all β ∈ Dβ2 that

R(x̂β̄
MLE,x0)2 → m2

β1,β2,β3 ,

and for all β ∈ Dβ3 that
R(x̂β̄

MLE, x̂
β̄
MLE) → sβ1,β2,β3 ,

where (sβ1,β2,β3 ,mβ1,β2,β3) are maximizers ψβ̄. Furthermore, the optimizers of ψβ̄(s,m) are unique
up to a sign for β ∈ Dβ2 ∩ Dβ3.

Proof. This proof follows from an application of the envelope theorem and the fact that the ground
state variational formula is the limit of the finite dimensional ground state. We start by charac-
terizing the overlaps R(x̂MLE,x0). By universality, we know that the square of R(x̂MLE,x0) and
R(x̂β̄

MLE,x0) converge to the same value.

Step 1: We fix the parameters β1 and β3 and consider

fN (β2) = 1
N

EmaxH β̄
N (x) = 1

N
Emax β1√

N

∑
i<j

gijxixj + β2
N

∑
i<j

x0
ix

0
jxixj − β3

2N
∑
i<j

x2
ix

2
j

as a function of β2 only. By the envelope theorem we have that

f ′
N (β2) = 1

2ER(x̂MLE,x0)2 ,

where x̂MLE denotes a maximizer of H β̄
N (x).

Step 2: We now need to relate f ′
N with the derivative of ψ with respect to β. Notice that fN (β2)

is convex in β2 because it is the pointwise limit in L of convex functions in β2 by (A.3),

lim
L→∞

1
L
FN (Lβ2) := lim

L→∞

1
L
FN (Lβ1, Lβ2, Lβ3) = fN (β2).
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Since the derivatives of convex functions converge to the derivative of the limit on all points were
the limit is differentiable we have

f ′
N (β) → d

dβ2
sup
s,m

ψβ̄(s,m) .

Step 3: It remains to see that the limiting object is characterized by a maximizer of ψβ̄. By another
application of the envelope theorem we see that

d

dβ2
sup
s,m

ψβ̄(s,m) = m2
∗

2 ,

where m∗ is a maximizer of ψ(S,M). In particular, there can only be at most two maximizers of
ψ(S,M) and they are unique up to a sign. We have

ER(x̂PMLE,x0)2 → m2
∗ ,

where m∗ is a maximizer of ψ(S,M). By Lemma G.1, we conclude
R(x̂PMLE,x0)2 → m2

∗ ,

almost surely.
The proof for the characterization of the limit of R(x̂MLE, x̂MLE) is identical, differentiating in

β3 instead. It uses again that the only dependence of ψ in β3 is in the linear last term of the
formula. □

The next result shows that the differentiability condition is necessary and sufficient for ψβ̄ to
have a unique maximizer.
Lemma G.6. We have

{(β1, β2, β3) | ∂β2f exists, ∂β3f exists} = {(β1, β2, β3) | ψβ̄ satisfies Assumption 2 } .
Proof. Suppose that ψβ̄ satisfies Assumption 2. More formally suppose for fixed β there exists
an open interval I such that β ∈ I, and for every β′ ∈ I there exists a unique maximizing pair
(sβ′ ,±mβ′) for ψβ′(S,M), then the map β 7→ ψβ1,β,β3 is differentiable on I. (The analogous
statement holds for uniqueness in S.)

We proceed using the convexity argument as in the classical proof of the differentiability of the
Parisi formula [65]. To simplify notation, we fix β1 and β3 and treat the functions f as only a
function of β2 = β. The case with β3 will be handled in a similar manner.

Indeed suppose the hypothesis above holds, to show differentiability at β it suffices to show there
is a unique subgradient, as the map β 7→ ψβ1,β,β3 is convex. Letting a denote a subgradient we
have for every y > 0 that:

a ≤ f(β + y) − f(β)
y

,

set yn = n−1/2, then immediately it follows that

a ≤ 1
yn

(ψβ+yn(Sn,Mn) − ψβ(Sn,Mn)) ,

where (Sn,Mn) is the minimizing pair at β + yn, and (S,M) the minimizing pair at β. We thus
have the corresponding Parisi functionals, and by definition of the infimum we may take a sequence
ζn, µn, λn so that:

inf
ζ,λ,µ

Pβ + 1
n

≥ Pβ(ζn, λn, µn) ,

plugging in this inequality into both terms we then get:

a ≤ M2
n

2 + 1√
n
.
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Proceeding as above taking we obtain a matching lower bound:

(M ′
n)2

2 − 1√
n

≤ a ≤ M2
n

2 + 1√
n
.

By the uniqueness hypothesis and continuity of the map β → ψβ one then has that M2
n, (M ′

n)2 →
M2, and hence the is a unique subgradient if there is a unique maximizer. (This argument follows
verbatim when differentiating in β3 and gives differentiability in S.

The converse is immediate, because if ψ is differentiable in β2 and β3, then one immediately
obtains uniqueness for maximizing pairs by Danskin’s envelope theorem as was shown in part 3 of
the proof of Lemma G.5. □

We end this section by showing that although in some cases the maximizers of ψβ may not be
unique, the performance of the MLE is still characterized by the maximizers of ψ.

Lemma G.7. Let β be fixed, and suppose that (S,M) are such that −∞ < ψ(S,M) < supψ. Let
GSN denote the (random) collection of maximizers of Hβ

N in ΩN , then for ε > 0 sufficiently small,
one has:

lim
N→∞

1
N

logP(GSN ∩ {R1,1 ≈ε S,R1,0 ≈ε M} ≠ ∅) < 0 .

Furthermore, one has that the collection of all limit points, taken over all sequences of near maxi-
mizers xN , for the sequence (SN (x),MN (x)) is equal to Cβ̄.

Proof. We proceed as follows, since ψ(S,M) < supψ, there are constant ε, δ > 0 such that if
Aδ = [S − δ, S + δ] × [M − δ,M + δ] ∩ C, then

sup
(s,m)∈Aδ

ψ + ε < sup
(s,m)∈C

ψ .

By Lemma G.1 one has that:

P
( 1
N

∣∣∣∣∣E sup
Ωδ(s,m)

Hn(x) − sup
Ωδ(s,m)

Hn(x)
∣∣∣∣∣ ≥ ε

2
)

≤ e− CNε2
4 ,

and so by Theorem 2.1, we have with with probability at least 1−2e− 1
4 CNε2 for any x ∈ GSN that:

1
N

∣∣∣∣∣HN (x) − max
Ωδ(S,M)

HN

∣∣∣∣∣ ≥ | sup
(s,m)∈C

ψ − sup
(s,m)∈Aδ

ψ| − ε

2 + o(1) .

Hence, for N sufficiently large one has that GSN ∩ {R1,1 ≈δ S,R1,0 ≈δ M} ̸= ∅, with probability
at most 2e− 1

4 Cε2N . Consequently:

lim
N→∞

1
N

logP(GSN ∩ {R1,1 ≈ε S,R1,0 ≈ε M} ≠ ∅) ≤ −Cε2

2 ,

which proves the first claim. The second claim follows from Portmanteau’s theorem. Suppose that
(SN (xN ),MN (xN )) converges weakly to (S ,M ), then for any sufficiently small δ neighbourhood
U of (S,M), such that Cβ ∩U is empty, the large deviation upper bound from before implies that:

P((S ,M ) ∈ U) ≤ lim
N→∞

P((SN (xN ),MN (xN ) ∈ U)

≤ lim
N→∞

P(GSN ∩ {R1,1 ≈δ S,R1,0 ≈δ M} ≠ ∅) = 0 ,

and hence the support of (S ,M ) is contained in Cβ̄.
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Now let us fix a point (S,M) in Cβ̄, then by definition of a near maximizer and concentration of
HN/N , one has for any fixed ε > 0, and for N sufficiently large that:

max
x∈Ωε(S,M)

HN

N
> ψ(S,M) − ε ,

with probability 1 − o(1). Consequently there is x̂N ∈ Ωε(S,M) achieving this bound. Let us
consider the sequence of overlaps (R(x̂N , x̂N ), R(x̂N x̂0,N )), we note that this sequence is tight,
and so by passing to a subsequence we may assume that (R(x̂N,ε, x̂N,ε), R(x̂N x̂0,N )) converges
almost surely as N → ∞ to some random variables (Sε,Mε) By definition of Ωε we have that

|Sε − S| ≤ ε and |Mε −M | ≤ ε ,

hence taking ε → 0 implies that Mε → M and Sε → S almost surely, finishing the proof.
□

We now state an impossibility result for models when β2 = 0 and x0 is balanced, i.e. its sample
mean converges to 0. This follows from the following fact about exchangeable independent sums.

Lemma G.8. Let yN be a sequence such that 1
N

∑N
i=1 y

N
i → 0 and let xN a triangular array of

uniformly bounded exchangable vectors independent of y. Then

1
N

N∑
i=1

xiyi → 0 ,

in probability.

Proof. By Markov’s inequality, it suffices to show that

E
( 1
N

N∑
i=1

xiyi

)2
→ 0 .

We have

E
( 1
N

N∑
i=1

xiyi

)2
= 1
N2

[∑
i,j

E[xixj ]yiyj

]

= 1
N2

[
aN

N∑
i=1

y2
i + bN

∑
1≤i ̸=j≤N

yiyj

]

= bN

( 1
N

N∑
i=1

yi

)2
+O(N−1) ,

where aN = E[x1] and bN = E[x1x2]. These numbers aN and bN are bounded, so

lim
N→∞

E
( 1
N

N∑
i=1

xiyi

)2
= 0 .

□

We now have the following characterization of performance when β2 = 0.

Lemma G.9. If β2 = 0 and EQx0 = 0, then CS(x0, x̂PMLE) = 0.

Proof. By Theorem G.7 we have that (R11, R10) have limit points in the set Cβ̄. It suffices to show
that Cβ̄ only contains points of the form (s, 0).
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When β2 = 0, we have H β̄
N (x) defined in (A.1) does not depend on x0 nor Q. By symmetry,

any near maximizer x̂ of H β̄
N (x) has exchangeable bounded entries and is independent of x0. By

Lemma G.8 it follows that any near maximizer satisfies

R10 = 1
N

N∑
i=1

x̂ix
0
i → 0 ,

in probability. Since the possible limit points of the overlaps of near maximizers determine Cβ̄ by
Theorem G.7, the set Cβ̄ only contains points of the form (s, 0). □

Appendix H. Coarse Equivalence of Psuedo Estimators

In this section, we prove Theorem 3.2, using results proved in Sections A and G.

Proof of Theorem 3.2. We first consider the case of well-scored models. Given two well-scored
loglikelihood functions g1 and g2, we let β̄(g1) and β̄(g2) to be the Fisher score parameter vectors
corresponding to g1 and g2. Note that if the ratios satisfy:√

β1(g1)√
β1(g2)

= β2(g1)
β2(g2) = β3(g1)

β3(g2) ,

then β̄(g1) = Cβ̄(g2) for some constant C. By Lemma A.1 this implies that

H
β̄(g2)
N (x) = CH

β̄(g1)
N (x) ,

and hence both functions have the same maximizers. Therefore,

R(x̂β̄(g1)
MLE ,x0) = R(x̂β̄(g2)

MLE ,x0) and R(x̂β̄(g1)
MLE , x̂

β̄(g1)
MLE ) = R(x̂β̄(g2)

MLE , x̂
β̄(g2)
MLE ) .

On the other hand, by Theorem 2.1 and Lemma G.7, the maximizers satisfy

R(x̂g1
MLE,x0) = R(x̂β̄(g1)

MLE ,x0) → m(g1) and R(x̂g1
MLE, x̂

g1
MLE) = R(x̂β̄(g1)

MLE , x̂
β̄(g1)
MLE ) → s(g1)

R(x̂g2
MLE,x0) = R(x̂β̄(g2)

MLE ,x0) → m(g2) and R(x̂g2
MLE, x̂

g2
MLE) = R(x̂β̄(g2)

MLE , x̂
β̄(g2)
MLE ) → s(g2) ,

where s(gi),m(gi) are maximizers of ψβ̄(g1) and ψβ̄(g2) respectively. We conclude that the set of
all limit points of the overlaps coincide so appealing again to Lemma G.7, we can conclude that
Cβ̄(g1) = Cβ̄(g2), which is the definition of coarsely equivalent PMLEs.

To prove part (b) of Theorem 3.2, note that if Ω satisfies |x| = C for every x ∈ Ω, then the third
term in H β̄(g1)

N (x) and H β̄(g2)
N (x) are constant. Consequently one has for some constants C,D that:

CH
β̄(g1)
N (x) +D = H

β̄(g2)
N (x) ,

and hence H β̄(g1)
N (x) and H

β̄(g2)
N (x) have the same maximizers. The result then follows from the

same argument as above.
□

The proof for illscored models is similar.

Proof of Theorem 3.3. For illscored models, notice that if β4(g1) and β4(g2) are non-zero and satisfy√
β1(g1)√
β1(g2)

= β2(g1)
β2(g2) = β3(g1)

β3(g2) = β4(g1)
β4(g2) = C, (H.1)

then Lemma A.1 implies that

H
β̄(g2),β4(g2)
N (x) = CH

β̄(g1),β4(g1)
N (x) .
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From here the remainder of the proof is identical to the above, appealing to Theorem 2.5 instead
of Theorem 2.1. □

We conclude with the proof of Theorem 3.1.

Proof of Theorem 3.1. For a given inference problem (g0, g1) with information parameters β̄, the
coarsely equivalent model given in (A.1) is equal to:

H β̄
N (x) =

√
β1√
N

∑
1≤i≤j≤N

gijxixj + β2
N

∑
1≤i≤j≤N

x0
ix

0
jxixj − β3

2N
∑

1≤i≤j≤N

x2
ix

2
j + β4

∑
1≤i≤j≤N

xixj√
N
.

Let Y denote the matrix given by:

Y =
√
β1G+ β2√

N
x0(x0)T + β41 ,

with G a symmetric matrix whose entries are i.i.d N (0, 1), and 1 is the matrix with all entries equal
to 1. For any x ∈ ΩN , one then has the following equality:

HN (x) = −1
2

∥∥∥∥Y − 1√
N
xxT

∥∥∥∥2

F

− β3 − 1
N

∥∥∥xxT
∥∥∥2

F

=
N∑

i,j=1
gβ̄

U,1

(
Yij ,

xixj√
N

)
− gβ̄

U,1(Yij , 0) ,

and hence maximizing HN (x) corresponds exactly to the pseudo-likelihood inference task corre-
sponding to the pair (gβ̄

U,0, g
β̄
U,1). This gives the interpretation of least squares with a correction

term.
An alternative approach to proving theorem 3.1 is to compute the information parameters for

the pair (gβ̄
U,0, g

β̄
U,1) directly to see they are equal to β̄. We omit the calculations as they are

straightforward. □

Appendix I. Properties of the Ruelle Probability Cascades

For a textbook introduction to the Ruelle probability cascades, we refer to [65, Chapter 2]. In
this section, we recall only the essentials to understand the notation in the Appendices, and remind
readers of its connection with the Parisi PDE. The Ruelle probability cascades are a measure on a
Hilbert space indexed by Nr parameterized by sequences

ζ−1 = 0 < ζ0 < · · · < ζr−1 < 1 (I.1)

and
0 = Q0 ≤ Q1 ≤ · · · ≤ Qr−1 ≤ Qr = S. (I.2)

The weights of the Ruelle probability cascades is indexed by Nr, the leaves of the infinite rooted
tree with depth r encoded by the sequence of parameters ζ. Every leaf of the tree α = (n1, . . . , nr) ∈
Nr can be encoded by a path along the vertices,

α|1 = (n1), α|2 = (n1, n2), . . . , α|r−1 = (n1, n2, . . . , nr−1), α = α|r = (n1, . . . , nr)

with the convention that α|0 = ∅ is the root of the tree, and k ≤ r denotes the distance from the
vertex α|k ∈ Nk to the root. Each vertex β|k = (n1, . . . , nk−1, nk) of the tree will be associated with
a random variable uβ|k defined as follows: Let β|k−1 = (n1, . . . , nk−1) denote the parent of β|k and
let

u(β|k−1,1) > u(β|k−1,2) > · · · > u(β|k−1,nk) > . . . .
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be the points from a Poisson process with mean measure ζk−1x
−1−ζk−1 arranged in decreasing order,

and define
uβ|k = u(n1,...,nk−1,nk) = u(β|k−1,nk).

We further assume that these points are generated independently for different parent vertices. For
each leaf α ∈ Nr, the weights of the Ruelle probability cascades vα is the product of these points
along the path from the root to the leaf:

vα =
uα|1 · · ·uα|r∑

β∈Nr uβ|1 · · ·uβ|r

.

We consider the Gaussian processes Z(α) and Y (α) indexed by points on the infinite tree Nr

with covariances
EZ(α1)Z(α2) = Qα1∧α2 EY (α1)Y (α2) = 1

2Q
2
α1∧α2 .

The notation α1 ∧α2 denotes the least common ancestor of the paths leaves α1 and α2 of the infinite
tree indexed by Nr,

α1 ∧ α2 = min
{

0 ≤ j ≤ r | α1
|1 = α2

|1, . . . , α
1
|j = α2

|j , α
1
|j+1 ̸= α2

|j+1

}
These averages with respect to the Ruelle probability cascades variable α can be computed using

the following recursive formulation from [65, Theorem 2.9].

Lemma I.1 (Averages with Respect to the Ruelle Probability Cascades ). Let C : R → R be an
increasing non-negative function. Suppose that there exists a Gaussian process g(α) by α ∈ Nr with
covariance

Eg(α1)g(α2) = C(Qα1∧α2)
independent of vα. For a function f : R → R we define

Xr = f
( r∑

k=1
(C(Qk) − C(Qk−1))1/2zk

)
Xp = 1

ζp
logEzk+1e

ζpXp+1 for 0 ≤ p ≤ r − 1

where zk are iid standard Gaussians. If Eeζr−1Xr < ∞ then
E log

∑
α

vαe
f(g(α)) = X0.

The average on the outside is over the randomness in the Gaussian processes and the random
measure vα.

This is applied in Section B in the following way. We start by defining recursively the random
variables Xr, Xr−1, . . . , X0 that depend on x0, the sequences (I.1) and (I.2), and real parameters
λ, µ. Let Xr be the random variable

Xr = log
∫
e

β
∑r

j=1 zix+λx2+µxx0
dPX(x)

where zj are Gaussian random variables with covariance
Var(zj) = Qj −Qj−1

and x0 is an independent random variable with distribution P0. We define recursively for 0 ≤ p ≤
r − 1 the random variables

Xj = 1
ζj

logEzj+1e
ζjXj+1 . (I.3)

Then Lemma I.1 implies that

lim
N→∞

1
N

E log
∑

α

vα

∫
eβ
∑N

i=1 Zi(α)xi+λx2
i +µxix

0
i dPX(x) = EQX0(x0).
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By continuity, one can represent the averages with respect to the Ruelle probability cascades as
the solution to the Parisi PDE, which is the form we are using in this work. The details of this
reduction can be found in [65, Section 4.1]. Consider a distribution function ζ(t) such that

ζ(t) = ζp Qp ≤ t < Qp+1

for p = 0, . . . , r. The following Lemma shows that we can approximate the discrete distributions

Lemma I.2. For every discrete distribution function ζ(t) encoded by the parameters (I.1) and (I.2),
then

lim
N→∞

1
N

E log
∑

α

vα

∫
eβ
∑N

i=1 Zi(α)xi+λx2
i +µxix

0
i dPX(x) = EQX0(x0) = Φζ(0, 0).

Furthermore, by continuity [65, Lemma 4.1] we can extend this result to any distribution function
ζ(t), which gives us the representation in (B.24).

We end this section by stating a an upper bound of the Ruelle probability cascades of a partition
with respect to its maximum value on each partition. The proof can be found in [67, Lemma 6].

Lemma I.3 (Upper Bound of the Ruelle Probability Cascades). Let g(α) be a Gaussian process
indexed by α ∈ Nr with covariance

Eg(α1)g(α2) = C(Qα1∧α2)
independent of vα. If Aj : R → R are positive functions of the same Gaussian process g(α) for
1 ≤ j ≤ n then

E log
∑

α∈Nr

vα

∑
j≤n

Aj(g(α)) ≤ logn
ζ0

+ max
j≤n

E log
∑

α∈Nr

vαAj(g(α)),

where ζ0 > 0 is the smallest point in the sequence (I.1).
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