
October 30, 2025 MAT521 – Week 9 Justin Ko

1 Important Multivariable Distributions

1.1 Mulitinomial Distribution

The multinomial distribution models the number of each outcome in multiple independent experiments
with k possible outcomes. The multinomial distribution is a generalization of the binomial distribution.

Definition 1 (Multinomial Distribution). Consider an experiment in which:

1. Individual trials have k possible outcomes, and the probabilities of each individual outcome are
denoted pi, 1 ≤ i ≤ k, so that p1 + p2 + · · ·+ pk = 1.

2. Trials are independently repeated n times, with Xi denoting the number of times outcome i
occurred, so that X1 +X2 + · · ·+Xk = n.

We say that X1, ..., Xk has a multinomial distribution with parameters n and p1, ..., pk, if X has joint
PMF

pX1,...,Xk
(x1, ..., xk) =

n!

x1!x2! · · ·xk!
px1
1 · · · pxk

k =

(
n

x1, . . . , xk

)
px1
1 · · · pxk

k ,

and is denoted by
X = (X1, ..., Xk) ∼ Mult(n, p1, ..., pk).

The terms n!
x1!x2!···xk!

=
(

n
x1,...,xk

)
are called multinomial coefficcients.

Remark 1. Since we must have p1 + p2 + · · ·+ pk = 1 and X1 +X2 + · · ·+Xk = n, the kth variable
is uniquely determined by the first k − 1 variables,

pk = 1− p1 − p2 − . . .− pk−1 and xk = n− x1 − x2 − . . .− xk−1

so the joint PMF is sometimes written as

pX1,...,Xk−1
(x1, ..., xk−1) =

n!

x1!x2! · · ·xk−1!(n−
∑k−1

i=1 xi)!
px1
1 · · · pxk−1

k−1

(
1−

k−1∑
i=1

pi

)n−
∑k−1

i=1 xi

Remark 2. Notice that when k = 2, then we have the PMF of the binomial distribution.

Example 1. The following experiments can be modeled by a multinomial distribution

Experiment X Distribution
Draw 10 cards from a deck with replacement # of each suit Mult(10, 1

4 ,
1
4 ,

1
4 ,

1
4 )

Roll a dice n times # of each roll Mult(n, 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 )

20 customers order from a menu of 3 items # of each item Mult(n, p1, p2, p3)

1.1.1 Properties

1. Marginal PMF: The number of times the outcome i occurred is

Xj ∼ Bin(n, pj), for j = 1, 2, . . . , k .

2. Sum of Marginals: The number of times the outcomes i or j occurred is

Xi +Xj ∼ Bin(n, pi + pj), for i ̸= j.

3. Conditional PMF: The number of times i occured given that i and j occurred t times is

Xi |Xi +Xj = t ∼ Bin

(
t,

pi
pi + pj

)
, for i ̸= j.

4. Expected Values: The expected value of the outcomes are given by

E[XiXj ] = n(n− 1)pipj for i ̸= j and E[Xi] = npi for i = 1, . . . , k
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1.2 Multivariate Normal

The multivariate normal is the most commonly seen multivariate distribution in statistics, data science
and many other applied fields. It models the behavior of the sums of i.i.d. random vectors. It is the
multivariate generalization of the normal distribution.

Definition 2 (Multivariate Normal Distribution). We say that the vector X = (X1, X2, . . . , Xn) ∈ Rn

has a multivarwiate normal distribution with mean µ = (µ1, . . . , µn) and positive definite covariance
matrix Σ ∈ Rn×n if X has joint PDF

fX(x) =
1

(2π)
n
2

1√
det(Σ)

e−
1
2x

⊺Σ−1x, x ∈ Rn.

This is denoted by
X ∼ N(µ,Σ).

Remark 3. In the special case when n = 1, the above density is equivalent to the multivariate normal
we saw before.

A special case of the multivariate normal is when all of its entries are i.i.d. standard normal.

Definition 3 (Standard Normal Vector). We say that the vector X = (X1, X2, . . . , Xn) ∈ Rn has a
standard normal distribution if it has a multivariate normal distribution with mean µ = (0, 0, . . . , 0)
and covariance matrix I. In this case, X has density

fX(x) =
1

(2π)
n
2
e−

1
2∥x∥

2
2 =

1

(2π)
n
2
e−

1
2

∑n
i=1 x2

i , x ∈ Rn.

and is denoted by
X ∼ N(0, I).

Remark 4. It follows immediately that if X = (X1, X2, . . . , Xn) ∈ Rn, then its joint PDF is simply
the product of n standard normal PDFs,

fX(x) =

n∏
i=1

fZ(xi) =

n∏
i=1

1√
2π

e−
1
2x

2
i

so the formal definition is consistent with the interpretation of X having i.i.d. standard normal entries.

1.2.1 Constructing the Multivariate Normal

Recall that in the univariate case, we can construct the normal distribution X ∼ N(µ, σ2) by taking
linear transformation of a standard normal distribution Z ∼ N(0, 1) through a method called (de)-
standardizing,

X
d
= σZ + µ.

The mean and variance uniquely determine the normal distribution, and one can easily check that

E[σZ + µ] = µ and Var[σZ + µ] = σ2.

The multivariate normal can be constructed in the same way. We can construct the normal dis-
tribution X ∼ N(µ,Σ) ∈ Rn by taking a linear transformation of a standard normal distribution
Z ∼ N(0, I)

X
d
= Σ

1
2Z+ µ.

The mean and variance uniquely determine the normal distribution, and one can easily check (see
Problem 1.14) that

E[Σ
1
2Z+ µ] = µ and Cov[Σ

1
2Z+ µ] = Σ.

Page 2 of 10



October 30, 2025 MAT521 – Week 9 Justin Ko

Remark 5. From this construction, it is possible to define a multivariate normal even if Σ is not
positive definite since Σ

1
2 is well defined whenever Σ is positive semidefinite. However, in this case

the density of X will not be explicit.

1.2.2 Properties

1. Marginal PDF: If X ∼ N(µ,Σ), then distribution of the marginal Xi is normally distributed
with mean µi and variance Var(Xi) = Cov(Xi, Xi) = Σii,

Xi ∼ N(µi,Σii).

Remark 6. It is not true that if a vector X = (X1, . . . , Xn) has marginals Xi ∼ N(µi, σ
2
i ), then

X is a multivariate normal in general. This is because knowing the marginal distribution isn’t
enough to recover the joint distribution.

2. Stability: The linear combination of independent normally distributed random variables are
normally distributed. Let Xi ∼ N(µi, σ

2
i ), i = 1, 2, . . . , n are independent then,

n∑
i=1

(aiXi + bi) ∼ N

(
n∑

i=1

aiµi + bi,

n∑
i=1

a2iσ
2
i

)
.

Remark 7. Notice that by linearity, we have

E
[ n∑

i=1

(aiXi + bi)

]
=

n∑
i=1

(ai E[Xi] + bi) =

n∑
i=1

aiµi + bi

and by independence

Var

( n∑
i=1

(aiXi + bi)

)
= Var

( n∑
i=1

aiXi

)
=

n∑
i=1

a2i Var(Xi) =

n∑
i=1

a2iσ
2
i

which precisely matches the mean and variance of the linear combination.

Remark 8. If X ∼ N(µ, σ2) and Y = aX + b, where a, b ∈ R, then we have the following
standardization result

Y ∼ N(aµ+ b, a2σ2).

3. Correlation implies independent: If (X,Y ) is a bivariate normal and Corr(X,Y ) = 0, then
X and Y are independent. This is generally not true if (X,Y ) are any random variables.

4. Covariance Characterization of PSD matrices: The covariance matrix of any random
variable is a positive semidefinite matrix.

Conversely, if C is any given symmetric and positive semidefinite n×n matrix, then there exists a
n×n matrix A such that C = AA⊤. So C is the covariance matrix of some normally distributed
random vector X = AZ + µ where Z is a standard Gaussian vector.

Page 3 of 10



October 30, 2025 MAT521 – Week 9 Justin Ko

1.3 Example Problems

Problem 1.1. Let
(X1, X2, X3) ∼ Mult(10, 0.5, 0.3, 0.2).

Compute Cov(X1, X2).

Solution 1.1. From the properties of the multinomial distribution (see Week 10), we know that if
(X1, . . . , Xk) ∼ Mult(n, p1, . . . , pk) then

E[XiXj ] = n(n− 1)pipj , E[Xi] = npi.

Applied to this problem using the equivalent formula for the covariance,

Cov(X1, X2) = E[X1X2]− E[X1]E[X2] = n(n− 1)p1p2 − np1np2 = −np1p2 = −10 · 0.5 · 0.3 = −1.5.

Problem 1.2. Consider drawing 5 cards from a standard 52 card deck of playing cards (4 suits, 13
kinds) with replacement. What is the probability that 2 of the drawn cards are hearts, 2 are spades,
and 1 is a diamond?

Solution 1.2. Denote by H,S,D,C the number of Hearts, Spades, Diamonds, and Clubs. Then

(H,S,D,C) ∼ Mult(5, 0.25, 0.25, 0.25, 0.25)

and

P(H = 2, S = 2, D = 1, C = 0) =
5!

2!2!1!0!

(
1

4

)4

Problem 1.3. In the game of Roulette, a small ball is spun around a wheel in such a way so that the
probability it lands in a black or red box is 18/38 each, and the probability it lands in a green box is
2/38. Suppose 10 games are played, and let B, R and G denote the number of times the ball landed
on black, red, and green, respectively.

� Write down the probability function of (B,R,G) along with all its constraints.

� Given that B = 5, calculate the probability that R = 5.

Solution 1.3.

Part 1: We know (B,R,G) ∼ Mult(10, 18/38, 18/38, 2/38) so

P(B = b, R = r,G = g) =
10!

b!r!g!

(
18

38

)b+r (
2

38

)g

,

when b, r, g ∈ {0, 1, . . . , 10} with b+ r + g = 10 and 0 otherwise.

Part 2: By definition of conditional probability, and using that marginally B ∼ Bin(10, 18/38),
we find

P(R = 5 | B = 5) =
P(R = 5, B = 5)

P(B = 5)
=

P(R = 5, B = 5, G = 0)

P(B = 5)

=
10!
5!5!

(
18
38

)10
10!
5!5!

(
18
38

)5 ( 20
38

)5 =

(
18

20

)5

≈ 0.59049
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Problem 1.4. We can model n rounds of fair, independent rock-paper-scissors game using multino-
mial distribution:

(R,P,C) ∼ Mult(n, 1/3, 1/3, 1/3).

Suppose that I play 5 games of R-P-S. Given that the sum of Rocks and Papers is 4, what would be
the distribution of the number of Rocks I played?

Solution 1.4. Using the conditional probability formula for the multinomial with with n = 5, pj =
1/3 for j = 1, 2, 3 and t = 4, we find

R | R+ P = 4 ∼ Bin

(
4,

1/3

1/3 + 1/3

)
= Bin

(
4,

1

2

)

Problem 1.5. In a manufacturing process, two pieces of metal are combined to form a new piece of
metal. Due to variations in the production process, we assume that the lengths of the two pieces, say
L1 and L2, follow continuous uniform distributions as L1 ∼ Unif(0.9, 1.1) and L2 ∼ Unif(1.5, 1.7).
Furthermore, due to variations joining process of the two pieces, the length of the new piece is not
exactly L1 + L2, but instead L = L1 + L2 + ε where ε ∼ N(0, 0.12). Compute the expected total
length, E(L).

Solution 1.5. From the formula sheet, we see E(L1) = 0.9+1.1
2 = 1, E(L2) = 1.5+1.7

2 = 1.6 and
E(ε) = 0. By linearity,

E(L) = E(L1 + L2 + ε) = E(L1) + E(L2) + E(L3) = 1 + 1.6 + 0 = 2.6.

Problem 1.6. In a certain cooking process, the target temperature, say C, follows a normal distri-
bution (in celsius) with mean 57 and standard deviation 2. Your American friend asks you: What is
the distribution of the target temperature in Fahrenheit?

Aside: The relationship between the temperature in Celsius c and Fahrenheit f is f = c · 9/5 + 32.

Solution 1.6. By the stability property, C · 9/5+ 32 ∼ N(57 · 9/5+ 32, (9/5)2 · 22) = N(134.6, 12.96).

Problem 1.7. Let X ∼ N(µ1, σ
2) be independent of Y ∼ N(µ2, σ

2). What is the distribution of
X − Y ?

Solution 1.7. By the stability property, we have E[X − Y ] = µ1 − µ2 and Var(X − Y ) = Var(X) +
Var(Y ) = 2σ2, so

X − Y ∼ N(µ1 − µ2, 2σ
2).

Problem 1.8. Three cylindrical parts are joined end to end to make up a shaft in a machine: 2 type-A
parts and 1 type-B part. The lengths of the parts vary a little, and have the following distributions:

A ∼ N(6, 0.4), B ∼ N(35.2, 0.6).

The overall length of the assembled shaft must lie between 46.8 and 47.5 or else the shaft has to be
scrapped. Assume the lengths of different parts are independent. What percentage of assembled shafts
has to be scrapped?
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Solution 1.8. Let A1, A2 and B denote the three independent parts. The total length is L = A1 +
A2 +B satisfies

L ∼ N(6 + 6 + 35.2, 0.4 + 0.4 + 0.6) ⇒ L ∼ N(47.2, 1.4)

The part is scrapped if L < 46.8 or L > 47.5, so

P(“scrapped”) = P(L < 46.8) + P(L > 47.5)

= P
(
Z <

46.8− 47.2√
1.4

)
+ P

(
Z >

47.5− 47.2√
1.4

)
= FZ(−0.37) + (1− FZ(0.27))

= (1− FZ(0.37)) + (1− FZ(0.27))

= 0.749.

Remark 9. A common mistake is to say that A1 + A2 +B is the same as L = 2A1 +B (A1 and A2

have the same distribution, after all), and conclude

L = 2A1 +B ∼ N(2 · 6 + 35.2, 22 · 0.4 + 0.6) ⇒ L ∼ N(47.2, 2.2).

The linearity of expectation (which holds even if the random variables are dependent) is not affected
by this mistake; but the variance is affected by this mistake. This is because A1 + A2 and 2A1 are
very different objects since the first is a sum of two independent random variables and the latter is the
sum of two very dependent random variables.

Problem 1.9. Let X1, . . . , Xn be independent and Xi ∼ N(µ, σ2) for all i = 1, . . . , n. Show that

X̄n =
1

n

n∑
i=1

Xi ∼ N

(
µ,

σ2

n

)
.

Solution 1.9. By the Gaussian stability, we have

X̄n =
1

n

n∑
i=1

Xi

is normally distributed. We just have to compute the mean and variance. By linearity,

E[X̄n] =
1

n

n∑
i=1

E[Xi] =
nµ

n
= µ.

and the variance of a linear combination (the covariance is 0 by independence) gives us

Var(X̄n) =

n∑
i=1

1

n2
Var(Xi) =

nσ2

n2
=

σ2

n
.

Remark 10. As n increases, the variance σ2/n decreases, so the distribution of X̄n becomes more
concentrated around µ. This is intuitive because if for example, you want to estimate the average of
the midterm (or any other event that is normally distributed), then asking 5 people gives us a less
reliable result than asking 50 people.
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Problem 1.10. Suppose that the height of adult males in Canada is normally distributed with a
mean of 70 inches and variance of 42 inches, and let X1, ..., X10 denote the heights of a random sample
of adult males. Suppose X̄10 denotes the sample mean of these heights.

Let
p1 = P(68 ≤ X1 ≤ 72)

and
p10 = P(68 ≤ X̄10 ≤ 72).

Which of the following is true?

1. p1 > p10

2. p1 = p10

3. p1 < p10

Solution 1.10. The interval contains the mean, so this result should be intuitive because a larger
sample means less variance, so p10 should be bigger. To reinforce this, we can compute this explicitly.

We find

p1 = P(68 ≤ X1 ≤ 72)

= P
(
68− 70

4
≤ Z ≤ 72− 70

4

)
, Z ∼ N(0, 1)

= FZ(0.5)− FZ(−0.5) = 2FZ(0.5)− 1

= 2 · 0.69146− 1 = 0.38292

Next,

X̄10 =
1

10

10∑
i=1

Xi ∼ N

(
1

10

10∑
i=1

70,
1

102

10∑
i=1

42

)
⇒ X̄10 ∼ N(70, 1.6)

so

p10 = P(68 ≤ X̄10 ≤ 72)

= P
(
68− 70√

1.6
≤ Z ≤ 72− 70√

1.6

)
, Z ∼ N(0, 1)

= FZ(1.58)− FZ(−1.58) = 2FZ(1.58)− 1

= 2 · 0.94295− 1 = 0.8859

1.4 Proofs of Key Results

Problem 1.11. If (X1, . . . , Xn) ∼ Mult(n, p1, . . . , pn), show that

1.
Xj ∼ Bin(n, pj), for j = 1, 2, . . . , k .

2.
Xi +Xj ∼ Bin(n, pi + pj), for i ̸= j.

3.

Xi |Xi +Xj = t ∼ Bin

(
t,

pi
pi + pj

)
, for i ̸= j.

4.
E[XiXj ] = n(n− 1)pipj for i ̸= j.
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Solution 1.11.

Part 1: By definition, Xj denotes the number of occurrences of outcome j in n trials and each
occurence has probability pj of happening so

Xj ∼ Bin(n, pj), for j = 1, 2, . . . , k .

Part 2: By definition, Xi +Xj denotes the number of occurrences of outcome i or j in n trials and
the probability of either i or j happening is pi + pj so

Xi +Xj ∼ Bin(n, pi + pj), for i ̸= j.

Part 3: Notice that if Xi+Xj = t, then Xi takes values in {0, 1, . . . , t}. Therefore, for x ∈ {0, 1, . . . , t}
we have

pXi|Xi+Xj
=

P(Xi = x)

P(Xi +Xj = t)
=

P(Xi = x,Xj = t− x)

P(Xi +Xj = t)
=

P(Xi = x,Xj = t− x,
∑

k ̸=i,j Xk = n− t)

P(Xi +Xj = t)

since the total of all outcomes must be n. From the second part, we know that Xi+Xj ∼ Bin(n, pi+pj)

pXi|Xi+Xj
=

n!
x!(t−x)!(n−t)!p

x
i p

t−x
j (1− pi − pj)

n−t

n!
t!(n−t)! (pi + pj)t(1− pi − pj)n−t

=
t!

x!(t− x)!

(
pi

pi + pj

)x(
pj

pi + pj

)t−x

which we recognize as the PMF of a Bin
(
t, pi

pi+pj

)
random variable.

Remark 11. This result is intuitive. Since we are given that Xj +Xj = t we know that we have t
total occurrences of Xi and Xj . We have that

P(i happens | i or j happens) =
P(i happens)

P(i or j happens)
=

pi
pi + pj

.

Therefore, the number of times i happens given that i or j happens at total of t times is Bin
(
t, pi

pi+pj

)
Part 4: We need to compute (noting that xi + xj ≤ n needs to hold):

E[XiXj ] =
∑

xi≥0,xj≥0
xi+xj≤n

xi · xj ·
n!

xi!xj !(n− xi − xj)!
pxi
i p

xj

j (1− pi − pj)
n−xi−xj

=
∑

xi≥1,xj≥1
xi+xj≤n

xi · xj ·
n!

xi!xj !(n− xi − xj)!
pxi
i p

xj

j (1− pi − pj)
n−xi−xj

=
∑

xi≥1,xj≥1
xi+xj≤n

n!

(xi − 1)!(xj − 1)!(n− xi − xj)!
pxi
i p

xj

j (1− pi − pj)
n−xi−xj

Like in the computation of the expected value of a binomial, we factor out terms to make the summation
look like the sum of a PMF,

= n(n− 1)pipj
∑

xi−1≥0,xj−1≥0
xi−1+xj−1≤n−2

(n− 2)!× pxi−1
i p

xj−1
j (1− pi − pj)

n−2−(xi−1)−(xj−1)

(xi − 1)!(xj − 1)!(n− 2− (xi − 1)− (xj − 1))!

= n(n− 1)pipj
∑

yi≥0,yj≥0
yi+yj≤n−2

(n− 2)!

(yi)!(yj)!(n− 2− yi − yj)!
pyi

i p
yj

j (1− pi − pj)
n−2−yi−yj

︸ ︷︷ ︸
=1 Sum of PMF of Mult(n − 2, pi, pj , 1 − pi − pj)

= n(n− 1)pipj
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where we used the change of variables yi = xi − 1, yj = xj − 1.

Alternative Proof: We can compute the expected value using linearity of expectation. We can
write Xi =

∑n
k=1 1Ak

where Ak is the event that outcome i occured on the kth trial, and

1Ak
=

{
1 Ak happens

0 Ak does not happens.

Similarly, Xj =
∑n

ℓ=1 1Bℓ
where Bℓ is the event that outcome j occured on the ℓth trial, and

1Bℓ
=

{
1 Bℓ happens

0 Bℓ does not happens.

Therefore,

E[XiXj ] = E

[
n∑

k=1

1Ak

n∑
ℓ=1

1Bℓ

]
=

n∑
k,ℓ=1

E [1Ak
1Bℓ

] .

We have two cases

1. k = ℓ : Suppose that k = ℓ. Since 1(Ak)1(Bk) = 1 if an only if Ak and Bk happen, we have

E[1Ak
1Bℓ

] = E[1Ak
1Bk

] = P(Ak ∩Bk) = 0

since both outcome i and j can’t happen at the same time.

2. k ̸= ℓ : Suppose that k ̸= ℓ. Since 1Ak
1Bℓ

= 1 if an only if Ak and Bℓ happens

E[1Ak
1Bℓ

] = P(Ak ∩Bℓ) = P(Ak)P(Bℓ) = pipj

since the trials are independent, so the outcomes Ak and Bℓ are independent (they refer to
different trials).

Since there are n(n− 1) ways to pick indices k ̸= ℓ, we have

E[XiXj ] =

n∑
k,ℓ=1

E [1Ak
1Bℓ

] = n(n− 1)E [1A11B2 ] = n(n− 1)pipj .

Problem 1.12. Suppose that X ∼ N(µ,Σ) ∈ Rn has a multivariate normal distribution. If Σ is such
that Corr(Xi, Xj) = 0, show that Xi and Xj are independent.

Solution 1.12. The joint distribution of (Xi, Xj) is normally distributed with mean E[Xi] = µi,
E[Xj ] = µj and Var(Xi) = Cov(Xi, Xi) = Σii, Var(Xj) = Cov(Xi, Xi) = Σjj , Cov(Xi, Xj) = 0 since

Corr(Xi, Xj) = 0. That is, (Xi, Xj) ∼ N(¯̃µ, Σ̃) where

¯̃µ = (µi, µj) and Σ̃ =

(
Σii 0
0 Σjj

)
.

Therefore, the joint PDF of (Xi, Xj) is

pXi,Xj
(xi, xj) =

1

(2π)

1√
det(Σ)

e−
1
2x

⊺Σ−1x

=
1

2π

1√
Σii

√
Σjj

e−
1
2 ((xi−µi)

2Σ−1
ii +(xi−µj)

2Σ−1
jj )

=
1√

2πΣii

e
− 1

2

(xi−µi)
2

Σii · 1√
2πΣjj

e
− 1

2

(xj−µj)
2

Σjj = pXi
(xi)pXj

(xj)

so Xi and Xj are independent.
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Problem 1.13. Show that any covariance matrix must be positive semidefinite.

Solution 1.13. Since Cov(Xi, Xj) = Cov(Xj , Xi), the matrix C must be symmetric. Moreover, if
y = (y1, . . . , yn)⊤ ∈ Rn, then

y⊤Cy = E[y⊤(X− E[X])(X− E[X])⊤y] = E[(y⊤(X− E[X]))2] = Var(y⊤X) ≥ 0,

and so C has to be positive semidefinite.

Problem 1.14. Show that any positive semidefinite matrix C corresponds to the covariance of some
normally distributed random variable.

Solution 1.14. If C is a positive semidefinite matrix, then there exists a matrix A (which may
not necessarily be unique) such that C = AA⊺. A very convenient choice for A is the Cholesky
decomposition of C into the form

C = LL⊤,

where the matrix L is a lower triangular matrix,

L =


ℓ11 0 0 0 · · · 0
ℓ21 ℓ22 0 0 · · · 0
ℓ31 ℓ32 ℓ33 0 · · · 0
...

...
. . .

. . .
...

ℓd1 ℓd2 ℓd3 · · · · · · ℓdd


Then if we define X = AZ + µ where Z is a standard Gaussian vector, then It follows that, for
i, j = 1, ..., n,

E[Xi] = µi and Cov(Xi, Xj) = Cov
( d∑

k=1

AikZk,

d∑
ℓ=1

AjℓZℓ

)
=

d∑
k=1

AikAjk = Cij .

Therefore, the covariance matrix C of X is given by

C = AA⊤.
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