October 18, 2025 MAT521 — Week 8 Justin Ko

1 Multivariate Distributions

We now develop a theory of probability to describe the simultaneous behavior of multiple (possibly
dependent) random variables. This is the analogue of multi-variable functions from calculus.

1.1 Bivariate Distributions

We want to build a theory of probability for more than 1 variable. We first consider the bivariate (2
variable) case where X and Y are random variables defined on the same sample space taking values
(x,y) € R2. The case with n random variables is similar and will be described in Section 1.3. We will
see that all definitions are straightforward generalization of the univariate (single variable) case.

Remark 1. We will define everything for discrete and continuous random variables to be precise, but
the ideas of the joint, marginal, and conditional distributions are very similar between the two. We
just replace the PMF with the PDF and replace sums with integrals just like in the univariate case.

1.1.1 Joint Distributions
The probabilities of objects involving both X and Y are encoded by the joint CDF.

Definition 1 (Joint Cumulative Distribution Function). The joint CDF of random variables X and
Y is the function Fx y : R? — [0, 1] defined by

Fxy(z,y) =P(X <z,Y <y) z,y € R.

Just like in the univariate case, the CDF allows us to compute the probability of any random
variable taking values in any subset of R2. Just like the PMF and PDF, in the case when the random
variables are discrete or continuous, there is an equivalent notion of probability functions.

Definition 2 (Joint Probability Mass Function). The joint PMF of X and Y is
pxy(@,y) =P{w e Q: X(w) =z} n{we 2:Y(w) =y}) =P(X =2,V =y)
for x € X(Q),y € Y(2) and 0 otherwise.
The joint PMF is still a probability function in the sense that
L 0<pxy(zy) <1
2. Zx,pr,Y(l’,y) =1.
Definition 3 (Joint Probability Density Function). The joint probability density function of X and

Y is
02

fX,Y(‘ray) = %FX,Y(I'J/)'

The joint PDF is not a probability (much like in the univariate case), but it satisfies the normalization
property

1. fxy >0
2. [ % fxy(@,y)dedy = 1.
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1.1.2 Marginal Distributions

The probabilities of only one random variable are encoded by the marginal distributions. These notions
are the same as in the univariate case, and can be recovered by “integrating out” the other random
variables we are not interested in.

Definition 4 (Marginal Cumulative Distribution Function). Suppose that X and Y are random
variables with joint CDF Fx y (z,y). The marginal CDF of X is

Fx(z)=P(X <z)=PX <2,Y <) = le Fxy(z,y).
Yy o0

Similarly, the marginal CDF of YV is
Fy(y) =P(Y <y) =P(X <o0,Y <y) = lim Fxy(z,y).
xr—r 00
When X and Y are either discrete or continuous, we have the following notions of the probability
functions, which behave like the PMF and PDF we covered earlier.

Definition 5 (Marginal Probability Mass Function). Suppose that X and Y are discrete random
variables with joint PMF px y(x,y). The marginal PMF of X is

px(@) =P(X =2)=PX =2,Y €Y(Q)) = Z px,y(7,y).
yeY (Q)
Similarly, the marginal distribution of Y is
py() =PY =y) =P(X € X(Q),Y =¢y) = D> pxy(®y).
z€X ()

Definition 6 (Marginal Probability Density Function). Suppose that X and Y are continuous random
variables with joint probability function fx y (x,y). The marginal PDF of X is

fx(z) Z/fX,Y(JJ,Z/) dy.

Similarly, the marginal distribution of Y is

Iy () :/fX,Y(l',y) dx.

Remark 2. We can go from the joint distributions to the marginal distributions, but we cannot go
the other way around. By only looking at the marginal distributions, we do not know how the random
variables behave together without further assumptions.

1.1.3 Conditional Distributions
Recall that for events A, B with P(B) # 0 we defined
P(ANB
P(A|B) = W

This gives the following natural definition for random variables.
Definition 7 (Conditional Probability Mass Function). The conditional PMF of X given Y =y is
PX=2Y=y) pxy(zy)

PY =y) py ()

Similarly, the conditional probability mass function of Y given X = x is

PX=2Y=y) pxy(®y)
P(X = z) px(x)

px|y(@|y) =P(X=z|Y =y)= provided that py (y) > 0.

py x(ylz)=PY =y|X=2)=

, provided that px(z) > 0.

Page 2 of 18



October 18, 2025 MAT521 — Week 8 Justin Ko

For each fixed y, the function px (x| y) is the probability mass function of the random variable
X |Y = y and has the usual properties, such as summing to 1. We can define the conditional PDF in

the analogous way even though PDF's are not necessarily probabilities.

Definition 8 (Conditional Probability Density Function). The conditional PDF of X given Y =y is

Ixiyv(xly) = w provided that py (y) > 0.

Similarly, the conditional PDF of Y given X = x is

fyixlz) = M, provided that fx(z) > 0.

Ix(x)

From the conditional probability functions, we get the analogues of the Bayes Rule and the law of

total probability.
Theorem 1 (Bayes’ Rule)

1. For discrete random variables X and Y

_ py x(y|z)py(y) P(X =2|Y =y)P(Y

)

2. For continuous random variables X and Y

Iy ix(yla)fy(y)

€T =
fY | X(y | ) fX (m)
Theorem 2 (Law of Total Probability)
1. For discrete random variables X and Y
o0
px(v) = / px v (| y)py (y)dy. P(X =x) = PX=2|Y =y PY
- yeY (Q)

2. For continuous random variables X and Y

fx(z) = /jo Fx v (@ | 9) v (9) dy.

1.1.4 Independence

Recall we say that events A and B are independent, if P(ANB) = P(A)-P(B). Since the CDFs encode

the behaviors of random variables we get the following definition.

Definition 9 (Independence). X and Y are independent random variables if
Fxy(z,y) =P(X <zY <y) =P(X <a)P(Y <y) = Fx(2)Fy(y)

for all values of (z,y).
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If X and Y have a joint PMF / PDF, then this is equivalent to
pxy(@y) =px(x)py(y) or  fxy(zy) = x@)fv(y) Voy
or for any y such that fy-(y), py (y) > 0,
px|v(|y) =px(x) or  fx|y(z|y) = fx(x) Vz

There is a converse of this result as well, that says that if the probability functions factorizes, then it
must correspond to independent random variables.

Proposition 1 (Factorization Characterization)

If the joint PDF of X and Y factorizes as

fX,Y(x7y) = g(l‘)h(y) for all T,y € R

for some non-negative functions g and h, then X and Y are independent. Furthermore, if either
g or h is a valid PDF, then the other is one too, and they correspond to the marginal PDFs of X
and Y respectively. An analogous statement holds for the PMF.

1.2 Joint Summary Statistics

We now introduce the summary statistics that generalizes the expected value and variances to the
multivariate setting.

1.2.1 Expected Value

Definition 10 (Expected Value). Suppose X and Y are discrete/continuous random variables with
joint probability functions px y/fxy. Then for any function g : R*? — R,

Elg(X,Y)] =Y g(@,y)pxy(z,y) or Ewaﬂﬂ=/]ﬂawhy@wMMy
(z,y)

depending on if X,Y are jointly discrete or continuous.
Properties:

1. Linearity of Ezxpectation: If X and Y are any random variables, then
Elagi(X,Y) +bg2(X,Y)] =a-E[g1 (X, V)] + b E[g2(X,Y)].
In particular, if X and Y are any random variables (not necessarily independent), then
E[X +Y] =E[X] +E[Y].
2. Product of two Independent Random Variables: If X and Y are independent, then
Elg1(X)g2(Y)] = E[g1(X)] E[g2(Y)].
In particular, if X and Y are independent, then

E[XY] = E[X]E[Y].
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1.2.2 Covariance
The covariance measures the joint variability of two random variables.

Definition 11 (Covariance). For two random variables X and Y, the covariance between X and Y is
Cov(X,Y) = E[(X - E(X))(Y — E(Y))]
provided the expression exists.

1.2.3 Properties
1. Relationship with Variance: Cov(X,X) = Var(X).

2. Equivalent formula:
Cov(X,Y) =E[XY] - E[X]|E[Y].

3. Relationship with independence I: If X and Y are independent,
Cov(X,Y) =0.

The converse of this statement is false!. There are pairs of random variables that have zero
covariance, but are dependent (see Problem 1.12).

4. Relationship with Independence II: If X and Y have zero covariance, then
E[XY] =E[X]E[Y].
5. Cauchy—Schwarz Inequality: For any random variables X and Y,
|E[XY]| < VE(X?)VE(Y?).

6. The Sign of the Covariance: Suppose X,Y are positively related (when X large, Y likely large;
when X small, Y likely small), then

Cov(X,Y) >0

Conversely, suppose X,Y are negatively related (when X large, Y likely small; when X small,
Y likely large), then

Cov(X,Y) < 0.
Direct (Positive) Indirect (Negative) No Correlation
x
2 x
x x * x
x x
x
X/ % x x -
x
x
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1.2.4 Correlation

The correlation measures how linearly related two random variables are.
Definition 12. The correlation of X and Y, denoted corr(X,Y), is defined by

— corr _ COV(X, Y) _ Cov(){7 Y)
p = conl ) VVar(X)y/Var(Y)  SD(X)SD(Y)’

We say that X and Y are uncorrelated if Cov(X,Y) = 0 (or equivalently corr(X,Y) = 0). We have
implicitly assumed that X and Y have non-zero variance in this definition

The correlation satisfies the following properties

1. p=corr(X,Y) has the same sign as Cov(X,Y)

2. -1<p<1

3. lpl=1 < X =aY +b. If a>0, then p=1, and if a < 0, then p = —1.

4. X,Y independent = corr(X,Y) =0

5. corr(X,Y) =0 # X,Y independent in general

6. corr(X, X) = Cov(X, X)/SD(X)? = Var(X)/ Var(X) = 1

7. Correlation does not imply causation: Two variables being correlated does not always imply that

one variable causes another to behave in certain ways.

1.3 Multivariate Random Variables

We considered the case of bivariate random variables above, but all the terminology above can be
extended to a collection X7, Xs, ..., X, of random variables in the obvious way.

Definition 13 (Multivariatge Joint PMF). For a collection of n discrete random variables, Xy, ..., X,
the joint probability function is defined as

DXy X (X1, X2, oy ) = P(Xq1 = 21, X2 = 22, ..., Xy = @p).
and we call the vector (X7,...,X,) a random vector.
Definition 14 (Multivariate Independence). X1, X, ..., X,, are independent if
DXy, X, (X1, T2, @) = px, (21)Px, (22) - px, (Tn)
for all values of (z1,...,2,).

Definition 15 (Mutlivariate Expected Value). If g : R” — R, and Xi,..., X,, are discrete random
variables with joint probability function fx, . x, (x1,...,25), then

]E[g(X17)XTL>] = Z g(x17"'?xTL)th...,X,,L(xlv'-'7xn)-

(T150e0sn)

The obvious modifications defines the continuous version of these results.
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1.3.1 Linear Combinations of Random Variables

We are often interested in the linear combinations of random variables.

Definition 16. A linear combination of the random variables X1, ..., X,, is any random variable of
the form
n
> aiX;
i=1

where aq,...,a, € R.
Example 1. The sample mean of X, ..., X, is obtained by taking a; = % for all 4
x-1yx
o i=1 Z

Let a1,...,an,01,...,b, € R. We have the following properties about linear combinations of
random variables.

1. Linearity of Expectation: For any random variables X;,..., X,

E [22 aixz} = i a; E[X3).

2. Bi-Linearity of Covariance: For any random variables X1,...,X,, and Y7,...,Y,,,
n m n m
Cov | - i 3o 00i| = 303 aty Cov(X,. 7).
i=1 i=1 i=1 j=1

In particular, for random variables X,Y, U,V be random variables, and a, b, ¢,d € R. Then,

Cov(aX +bY,cU + dV)
= acCov(X,U) + adCov(X,V) + bcCov(Y,U) + bdCov (Y, V)

3. Variance of Linear Combinations: The following result shows how the variance of a linear
combination is “broken down” into pieces:

Var <Z aiXi> = Za? Var(X;) + 2 Z a;a;Cov(X;, X;).
i=1 i=1

1<i<j<n
In particular, for random variables X,Y, and a,b € R,
Var(aX + bY) = a? Var(X) + b? Var(Y) + 2abCov(X,Y).

If the X4,..., X, are independent, then they are uncorrelated, so in this case

n n
Var <Z aiXi> = Z a? Var(X;)
i=1 i=1
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1.3.2 Common Distributions of Random Vectors
We now list the distributions of random variables (many we have already seen).

1. Sum of Independent Poisson is Poisson: If X ~ Poi(A;) and Y ~ Poi()2) are independent,
then
T =X +Y ~Poi(A\; + \a).

2. Conditional Poisson is Binomial: Let X ~ Poi(\;) and Y ~ Poi(A2) be independent. Then,
given X +Y = n, X follows binomial distribution. That is,

A1
X|X+Y =n~Bin(n, .
| n in <n g )\2)

Similarly, for Y, we have

A2
Y| X +Y =n~Bin|(n, .
| n in (n N )\2>
3. Sum of Independent Binomials is Binomial: If X ~ Bin(n,p) and Y ~ Bin(m, p) indepen-
dently, then
T=X+Y ~Bin(n+m,p).

4. Sum of Independent Bernouilli is Binomial: Let X7, X»,..., X, be independent Bern(p)

random variables. Then,
T=X+Xs+...4 X, ~ Bin(n,p).

5. Sum of Independent Geometric is Negative Binommial: Let X, Xo,..., X} be indepen-
dent Geo(p) random variables. Then,

T=X+Xo+4...+ X ~ NegBin(k, p).

Remark 3. Properties 3, 4, and 5 follow directly from the construction of these random variables.

1.4 Example Problems

Problem 1.1. Let X € {1,2,3} and Y € {1, 2}, and suppose that every outcome of (X,Y") is equally
likely. What is the joint PMF for the vector (X,Y)?

Solution 1.1. We can compute all the probabilities one by one and encode the joint PMF of X and
Y in the table

pxy(z,y) | 1 2 3 | pyv(y)
y 1 [1/6 1/6 1/6| 3/6
> |1/6 1/6 1/6| 3/6

px () 2/6 2/6 2/6 1

Problem 1.2. Suppose a fair coin is tossed 3 times. Define the random variables X = “number of
Heads”, and

_ )1 Head occurs on the first toss,
~ 10 Tail occurs on the first toss.

1. Find the joint PMF for (X,Y).
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2. Are X and Y independent?
3. What is the conditional distribution of X given Y7
4. What is the probability that X +Y = 2?7

Solution 1.2.

Part 1: We can compute all the probabilities one by one and encode the joint PMF of X and Y
in the table

T
pX,Y(JU,y) 0 1 2 3 pY(Z/)
y O 1/8 2/8 1/8 0 1/2

1 0o 1/8 2/8 1/8 1/2

px(x) /8 3/8 3/8 1/8 1

Part 2: We can see

pxy(O1) =0# -5 =px(O)py ()

which implies that X and Y are not independent (which makes perfect sense, as the number of heads
we have should depend on whether we had heads in the first toss).

Part 3: Using the formula px |y (z |y) = px,y(2,y)/py (y) we find

x
0 1 2 3
px|y(z|y=0)|2/8 4/8 2/8 0
pxiv@ly=1)| 0 2/8 4/3 2/8
Part 4: We have X +Y =2 ifand only if X =2,Y =0or X =1,Y = 1. We can sum these terms
up in the joint PMF

1

P(X +Y =2) =pxy(2,0) +px,v(1,1) + pxv(0,2) = - + T

| =
| =

Problem 1.3. Let X and Y be any discrete random variables. Show that
L 0<pxy(wy) <1
2. pxy(z,y) < px(x)

3. pxy(zy) <py(y)

Solution 1.3.

1. We have px y(z,y) = P(X = z,Y = y) and all probabilities must be between 0 and 1.

2. We have px vy (z,y) =P(X =2,Y =y) <P(X =2) = px(z) since {X =2,V =y} C{X ==z}

3. We have px y(z,y) =P(X =2,Y =y) <P(Y =z) = py(y) since {X =2,V =y} C{Y =y}

Problem 1.4. Suppose X and Y have joint PMF

1 /1\" /2\"
px,Y(w,y)=6(2> <3> , x,y=20,1,2...

Find the marginal PMFs px and py of X and Y.
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Solution 1.4. Recall the identity

Part 1: The X marginal is

from which we conclude that X ~ Geo(1/2).

Part 2: The Y marginal is

=
=~
&

I
NE

Wi Wl | =

8
Il

A/~ -/~ ©

from which we conclude that ¥ ~ Geo(1/3).

Problem 1.5. Suppose X ~ Poi(2), Y ~ Poi(3), and that X and Y are independent. What is the
joint probability function of X and Y7

Solution 1.5. By independence, we that for all integer valued x,y > 0,

—2§e—3£ _ 5273

pxv(z,y) = px(@)py (y) = e — =

Problem 1.6. Let N ~ Poi(\) be a Poisson random variable with the mean A. Then, consider N
i.i.d. random variables, independent of N, taking values 1 or 2 with probabilities p and ¢ = 1 —p
respectively. Let N; be the number of these random variables taking value j, so that N; + Ny = N.
Show that Ny and Ns are independent Poisson random variables with means Ap and Aq respectively.
Solution 1.6. We want to compute the joint PMF of Ny and No,

le,N2(n1,n2) = ]P(Nl = 77,1,N2 = ng) = ]P(Nl = ’Ill,N — N1 = 77,2) = ]P(Nl = 7’L1,N =nN1 —+ ng).
By the definition of conditional probability

P(Nl =ni,N=m —|—n2) :P(Nl znl\N:nl —l—?’Lg)P(N:’nl-i-Ng).

Page 10 of 18



October 18, 2025 MAT521 — Week 8 Justin Ko

By construction, when we have N = n; + no, then the conditional distribution of N7 | N = nq + ng is
binomial with n; 4+ no trials and probability p of success. Therefore,

ny 4+ no _ A\nitne
P(N; = N = P(N = Nj) = (1 —p)™2 - _
(N1 =n | ni 4+ n2) P(N = ny + Na) ( - >P (I1-p)-e ()]
_ (Tll + 712)‘ nl(l 7]))”2 ) 67A(p+17p) A\t
nilnsg! (n1 + 712)'
— ()\P)nlpnl L M1-p) (A —'P))nz.
ny! na:

The right hand side can be recognized as the product of the PMFs of a Poi(Ap) and Poi(A(1 — p))
random variable. It immediately follows that

Ap (/\p)nl ni ek(l—p) ()‘(1 — p))n2

N;,Np,(11,N2) =€
PNy N, (M1, 12) ol P "

so N1 and N, are independent since it is the product of PMFs, and the marginal distribution of Ny
and Ny are Ny ~ Poi(Ap) and Ny ~ Poi(A(1 — p)).

Remark 4. This is called the Poisson splitting theorem and it allows you to split a Poisson process
into two independent Poisson process by randomly marking each point independently.

Problem 1.7. Let X; and X5 be independent exponential random variables with rate 6; = )\% and

0y = /\% respectively. Let U denote the index of the smaller of X7 and X5, that is

1 xi<x
B 2 Xy < X,

In the case that X; = X5 we set U = 1. Furthermore, let Xy = min(X;, X2) to denote the value of
the smaller of X; and X5.

1. Find the distribution of Xy .
2. Find the distribution of Y.

3. Are Xy and Y independent?

Solution 1.7.

Part 1: We have
P(min(X1, Xp) > t) = P(X] > t) P(Xy > t) = e Mte Mt = g~ (utAe)t
so Xy is exponential with parameter A; + Ao.

Part 2: There are only two cases, so
P(U = 2) = P(Xl > XQ) = / / )\1)\26_>\1‘T1€_A2m2 dxldxg
0 To

o
:/ Age MP2e7 A2 o oy
0

DYDY
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Therefore,
A1

= 2) = .
AL+ A2

Part 3: We have

P(Xy >t,Y =1)=E[1(X; >t,Y =1)] = / / A dge MTemA202 doo dpy
t T

= /oo )\1(57(>\1+)\2)ml d:cl
t

- Le—()\ﬁ')\z)t
A1+ Ao

—P(Xy > )P(Y = 1)

since the indicator on the set {X; > ¢,Y = 1} means that we integrate over the region Xy > X; > t.
An identical computation show that

P(Xy >tV =2) =P(Xy > t)P(Y = 2),

so Xy and Y are independent. This is a somewhat surprising result since Xy looks like it depends on
the minimal index Y.

Remark 5. Notice that in this problem X;, X5 and Xy are continuous random variables while Y
is discrete. However, the notations and definitions for the joint distributions naturally extend to this
case as well.

Problem 1.8. If we roll a die n times, let’s denote by X1, ..., Xg the number of times we rolled a 1,
2,..., 6.

1. What is the distribution (or marginal probability function) of X; for j =1,...,67

2. Are X1, X5, ..., X4 independent?

3. What is the joint probability function of (X,...,Xs)?

4. Let’s denote by T'= X7 + X5 the number of times we had a 1 or two. What’s the distribution
of T = X1 + XQ?

Solution 1.8.
Part 1: By definition, if X; denotes the number of times we roll a j in n rolls, then
. 1
X, ~ Bin(n, 6)

Part 2: Intuitively, these are not independent because we must have X; + --- + Xg = n so Xi is
totally determined by X7 to X5. For example, if we consider the case

P(Xlzn,ngm...,XG:n):O
but

so they are not independent.
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Part 3: Let z1,...,26 € {1,...,n}. As noted earlier, if 1 + 29 + -+ + zg # n, then P(X; =
Z1,...,X¢ = x¢) = 0. Thus, let &1 + x2 + -+ + ¢ = n. We can arrange the z; rolls of 1, x5 rolls of
2,..., xg of rolls of 6, among the n trials in

n!
xlll'g! .. .$6!

many ways, using the formula for the arrangements with repeated objects: the 1 is repeated x; times,
the 2 is repeated x5 times, etc. Each of these arrangements has probability

OIRORO RO M)

Hence, the joint PMF of (X7,..., Xg) is
ol (D", o tat o tag=n,

le,.,,,XG (.’L'], Ce 7_([,‘6) = {fl!:EQI...:EG,

0 otherwise.
Part 4: T counts the number of 1’s and 2’s after n rolls. The probability of rolling a 1 or 2 is %, SO
1
T ~ Bi ( ,7).
in{n, g

Remark 6. We will in the next lesson that we could have used the fact that (Xi,...,Xg) ~

Mult(n, %, e %) and used the properties of the multinomial to derive all of the above parts.

1.5 Proofs of Key Results

Problem 1.9. If X and Y are any random variables, show that
Elagi(X,Y) +bg2(X,Y)| =a-E[g1 (X, V)] + b-E[g2(X,Y)].
In particular, if gy = = and g = y then

E[X + Y] = E[X] + E[Y].

Solution 1.9. We have by the definition,

Elagi (X,Y) +bg2(X,Y)] = Y [agi(z,y) + bga(z, y)] fx,v (2, y)

(z,y)
=a Y gi@y)fxy(@y) +0Y gz y)fxv (e, y)
(z,y) (z,y)

=a-E[gi(X,Y)] + b E[g2(X,Y)].
By taking g1 (z,y) = = and go(x,y) = y we immediately arrive at the fact that
E[X + Y] = E[X] + E[Y].

Remark 7. We have by the definition of the marginal PMF

EX] =Y afxy(@y) =3 > afxy(@y) =Y =Y fxy(zy) =Y zfx()

(z,y)

so E[X] coincides with the expected value for single random variables we saw before.
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Problem 1.10. If X and Y are independent random variables, show that
Elg1(X)g2(Y)] = Elg1(X)] E[g2(Y)].
In particular, if g3 = « and g = y then

E[XY] = E[X]E[Y].

Solution 1.10. Since fx y(z,y) = fx(z)fy(y) by independence, we have by the definition of the
expected value,

independence = Z 91(2)g2(y) fx (z) fy (y)

- (S awrx®) (Snwnw) - BxEy

By taking ¢1(z) =  and g2(y) = y we immediately arrive at the fact that
E[XY] =E[X]E[Y].

A similar proof holds for continuous random variables. The integration is used instead of summation
and we apply Fubini’s theorem to split the sum into two parts.

Problem 1.11. Prove Proposition 1.

Solution 1.11. Independence follows immediately if g(z) and h(y) integrated to 1, since in that case
we can g(x) = fx(x) and h(y) = fy (y). However, if we only know that

Ixy(x,y) =g(x)h(y)

then we don’t know that g and h integrate to 1. However, we can normalize the functions so that they
always integrate to 1 without loss of generality. We define ¢ = ffooo h(y) dy and consider the functions

g(x) = cg(x) and B(y) - @

fxy(z,y) = g(z)h(y) = cg(z)

Notice that by definition of ¢,
oo - 1 o0
hiy)dy=— | h(y)dy=

Likewise, by Fubini’s theorem and the fact that fxy is a joint PDF,

/_ dac—(/ h(y dy)/ dx—/ / ) dady = 1.

=fx,y zy)

This means that X and Y are independent with marginal PDFs fx = g and fy = h. The proof for
discrete random variables is identical.
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Problem 1.12. Suppose that X and Y are independent. Show that
Cov(X,Y)=0.

Show that the converse is false by providing a counterexample.

Solution 1.12. Suppose that X and Y are independent. We know that E[XY] = E[X]E[Y]. There-
fore, using the equivalent formula,

Cov(X,Y) = E[XY] — E[X]E[Y] = E[X]E[Y] — E[X]E[Y] = 0.

Counterexample: Let X ~ U(—1,1), and let Y = X2. X and Y are not independent because

1 1
0=IE”(X> Y < );HP’(X> 2>IP’<Y<4> >0
since X > £ = X? > 1 so it is impossible that Y = X? < 1 as well. However, we can compute the
covamance

Cov(X,Y) =E[XY] - E[X]E[Y] = E[X?] - E[X]E[X?] =0
since the PDF of X is symmetric, so E[X?] = 0 and E[X] = 0.

Problem 1.13. Prove the Cauchy—Schwarz inequality,

|E[XY]| < VE(X?)VE(Y?).

Equality holds if and only if Y = X for some constant a.

Solution 1.13. Notice that the statement is trivial if either X = 0 or Y = 0, so we consider the
non-trivial cases.
For any t € R, we have
0 <E[(tX —Y)? =at? -2t +c
where a = E[X?], b = E[XY] and ¢ = E[Y?]. A quadratic polynomial at?® — 2bt + ¢ is non-negative if
and only if it has at most one root, which happens if the discriminant satisfies

D=4V —4ac <0 = b* <ac = |b| < Vac

so |E[XY]| < /E[X?2]\/E[Y?2]. This proves the first part of the statement.

We now consider the equality case. Suppose now that we have equality | E[XY]| = /E(X?)/E(Y?),
so |b] = y/ac. This implies that D = 0, so the quadratic polynomial has exactly one real root. Let
A= g denote the value of this root, so

E[(AX —Y)?] = a)? —2bA + ¢ = 0.

We have that E[(AX —Y)?| = 0 if and only if \X —Y = 0 with probability one, so ¥ = \X = FLH X
with probability 1. Therefore, if X # aY for any a, then Y # ]?E[g(}% X so |E[XY]| # VE(X?)/E(Y?).

To prove the converse, suppose that X = aY. We have

|EIXY]| = [al| ElY?]| = VE((@¥ 2) VE(Y?) = |a| E[V?]

so equality holds.
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Problem 1.14. Show that p = corr(X,Y) satisfies [p| < 1 and |p| = 1 if and only ¥ = aX + b for
some constants a and b.

Solution 1.14. By the Cauchy—Schwarz inequality, applied to X — E[X] and Y — E[Y] we have

Cov(X,Y)| = |E[(X ~E[X])(Y ~E[Y)])]| < VE[(X —E[X])2]VE[(Y — E[Y])?] = /Var(X)y/Var(Y)
Rearranging terms implies that
[Cov(X,Y)|

v/ Var(X),/Var(Y

Next, we have that equality happens if and only if Y — E[Y] = a(X — E[X]) for some constant a.
This means that there must be a linear relation between Y and X if equality were to hold. To see
that any linear relation achieves equality, suppose that Y = aX + b for some constants a and b, so by
bilinearity

|corr(X,Y)| =

|Cov(X,Y)| = |Cov(X,aX + b)| = |aCov(X, X) + bCov(X,1))| = |a| Var(X)

and

VVar(Y) = y/Var(aX + b) = |a|\/Var(X),

|corr(X,Y)| =

SO

Remark 8. We can repeat the second computation without the absolute values to conclude that
corr(X,Y) = 1 implies that Y = aX + b for some constant a > 0 and corr(X,Y) = —1 implies that
Y = aX + b for some constant a < 0

Problem 1.15. Prove the binlinearity property of covariances

COV{iaiXiaibiY;] Zzalb Cov (X5, Yj).
i—1 i—1

1=1 j=1

Solution 1.15. This is a direct consequence of linearity of expectation and the distributive property

of numbers
n m n m

2 X2 b= b

=1 j=1

By the definition of the covariance,
Cov{ZaiXi,ZbiYi] _
i=1 i=1

linearity of expectation =E

(S-S (S [0
(S -0) (S0n-20)

distributive property =E Z Z a;ibi(X; — E[X;])(Y; — E[Yl])}

Li=1i=1
linearity of expectation = Z Z a;b; E[(X; — E[X;])(V; Z Z a;b;Cov(X;,Y;).
i=1 i=1 i=1 j=1
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Problem 1.16. Prove the formula for the variance of linear combinations of random variables,

Var (Z aiXi> = Za? Var(X;) + 2 Z a;a;Cov(X;, X;).
i=1 i=1

1<i<j<n

Solution 1.16. Since Var(X) = Cov(X, X), the proof follows directly from the bilinearity of covari-
ance. We have

Var (i a,»XZ) = Cov [ i a; X, i ain}
=1 =1 i=1

bilinearity = Z a;a;Cov(X;, X;)

i,j=1

n
split into diagonal and offdiagonal = ZG?COV(XZ',XZ') + ZaiajCov(Xi,Xj)
4 i#£j

Cov(X,Y) = Cov(Y, X), Var(X) = Cov(X, X) = Y " a? Var(X;) + 2 a;a;Cov(X;, X;).
i i<j
Problem 1.17. If X ~ Poi(\;) and Y ~ Poi()2) are independent, show that
T=X+Y ~Poi(\ + A2).

Solution 1.17. We have X +Y = nifand only if X = m and ¥ = n —m for m = 0,1,...,n.
Therefore,

prin) =P(X+Y =n)= > PX=zY=y)

m=0
n m n—m
_ A1 M =Xy )‘2
- 2¢ ! (n—m)!
m _
m=0

! (n—m) "2
n = ml(n—m)!
e—(M1tX2)
Binomial thm = ' (A + A2)™.
n/!

Problem 1.18. Let X ~ Poi(A\1) and Y ~ Poi(A2) be independent. Show that

A
X|X+Y =n~Bin(n, .
| n 1n<n )\1+>\2)

Similarly, for Y, we have

A2
Y| X+Y =n~Bin(n,
| n 1n<n )\1+)\2)
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Solution 1.18. Since X +Y ~ Poi(A; + Az2), we have

px,x+y(z,n) PX =z,X+Y =n)
px+y(n) — PX+Y=n)
PX=2)P(Y =n—2x)
P(X+Y =n)

“M AT a2 AT
o € 2l € (n—a)!

B e—(A1+A2) 7()‘14'_?‘2)”
n:

o n! /\1 v )\2 nor
h :L"(n*ﬂ'])' )\1+)\2 )\1+)\2

which we recognize as the PMF of a Bin (n, ﬁ) random variable. The proof for the Y given
X +Y =nis identical.

Px | x+y =

independence =
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