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1 Continuous Random Variables

The definition of the CDF is identical for all random variables whether they are discrete or not.

Definition 1 (Cumulative Distribution Function). The cumulative distribution function (CDF) of a
random variable X is

FX(x) = P(X ≤ x) := P({ω ∈ S : X(ω) ≤ x}), x ∈ R.

From the CDF, we can easily compute any probability, since the intervals (a, b] and (−∞, a] are
disjoint,

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a) = FX(b)− FX(a), (1)

so the CDFs encode the same information as a probability distribution. From the point of view of
CDFs, we have the following natural classifications of random variables.

Definition 2 (Discrete vs Continuous Random Variable). If the CDF of X is

1. a piecewise constant function, then X is a discrete random variable.

2. a continuous function, then X is a continuous random variable.

If the CDF is a continuous function, then it immediately follows from (1) that P(X = x) = 0, so

P(a < X ≤ b) = P(a < X < b) = P(a ≤ X < b) = P(a ≤ X ≤ b).

Remark 1. It is possible that a CDF does not fall under either of these categories, such as mixed
random variables with have CDFs with both jump discontinuities and strictly increasing parts.

1.1 Probability Density Function (PDF)

We can try to define the PMF for a continuous random variable, but the fact that P(X = x) = 0 for
all x ∈ R is problematic. We get around this by defining a new way to encode how likely a certain
value x is without defining it as a probability.

Definition 3 (Absolutely Continuous Random Variable). We say that a continuous random variable
X with distribution function FX is absolutely continuous if it is the antiderivative of some function
fX ,

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(t) dt.

Remark 2. It might be the case that FX(x) is not differentiable at isolated points. However, if fX(x)
is continuous at x, then

F ′
X(x) =

d

dx
FX(x) = fX(x).

Likewise, jump discontinuities of fX correspond to non-differentiable points of FX .

Definition 4 (Probability Density Function). The function fX is called the probability density function
(PDF). The function fX(x) and it satisfies the following properties

1. fX(x) ≥ 0 for all x ∈ R;

2.
∫∞
−∞ fX(x)dx = 1;

The support of fX (or X) is the closure of the set of non-zero values of the PDF,

supp(fX) = cl({x ∈ R : fX(x) ̸= 0}).
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Remark 3. By convention we take the closure of the set, which means that we always include the
endpoints of intervals in the support. This is not a big issue since fX(x) can be arbitrarily defined at
the endpoints since the area under the PDF does not change if we redefine the endpoints.

The PDF fX(x) is proportional to the probability that X lies in a small interval around x in the
sense that for ϵ small

P
(
x− ϵ

2
≤ X ≤ x+

ϵ

2

)
=

∫ x+ ϵ
2

x− ϵ
2

fX(x) dt ≈ ϵfX(x).

So fX(x) isn’t the probability that X = x, but it encodes the likelihood of x compared to other values.
In fact, fX(x) cannot be a probability since it is possible for it to take values larger than 1.

Remark 4. In this course, unless otherwise stated, all continuous random variables will be absolutely
continuous so we often drop the prefix “absolutely”.

1.2 Change of Variables Formula

Suppose that we know the PDF fX(x) of X. Our goal is to recover the the PDF fY (y) of the random
variable Y = g(X). This can be done directly using the following steps

1. Use the support of X to find the support of Y = g(X):

supp(Y ) = cl({y ∈ R : fY (y) > 0}) = g(supp(X)).

2. Compute the CDF of Y for y ∈ supp(Y ) by expressing it in terms of the CDF of X:

FY (y) = P(g(X) ≤ y) = . . .

When the function g is not strictly increasing (or decreasing) over the support of X, then we
must be careful when rewriting the inequality P(g(X) ≤ y).

3. Compute the PDF of Y by differentiating the CDF of Y ,

fY (y) = F ′
Y (y) y ∈ supp(Y ).

Remark 5. Technically, the function FY is only differentiable on the interior of supp(Y ). This is not
an issue since we can simply define fY (y) on the boundaries by continuity.

When g is invertible, the above procedure gives us the change of density formula.

Theorem 1 (Change of Variables Formula)

Let X be a (absolutely) continuous random variable and g be invertible and differentiable with
inverse g−1 on the support of Y = g(X), then

fY (y) = |(g−1)′(y)|fX(g−1(y)) =
1

|g′(g−1(y))|
fX(g−1(y)), y ∈ supp(Y ).

1.3 Expected Value and Variance

The expected value and variance of a random variable can be defined analogously to the discrete
random variables where the sum is now replaced by an integral.
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Definition 5 (Law of the Unconscious Statistician). If X is a continuous random variable with PDF
fX(x), and g : R → R is a function, then

E[g(X)] =

∫ ∞

−∞
g(x)fX(x) dx,

provided the expression exists.

It follows that for continuous random variables,

E[X] =

∫ ∞

−∞
xfX(x)dx

and

Var(X) = E[(X − E[X])2] =

∫ ∞

−∞
(x− E[X])2fX(x)dx.

This is analogous to how the expected value and variance of discrete random variables were defined,
but the sum over the PMF is replaced with an integral over the PDF.

Remark 6. The fact that the expected value is defined in a similar way is not a coincidence. In fact,
if X is any random variable, then we can define

E[g(X)] =

∫ ∞

−∞
g(x)dFX(x)

where FX is the CDF of X, and hence always defined. This integral is called the Riemann–Stieljes
integral, and it is defined in the natural way∫ ∞

−∞
g(x)dFX(x) = lim

∥Π∥→0

n∑
i=1

g(x∗
i )[FX(xi)− FX(xi − 1)]

where the limit ∥Π∥ → 0 means that the partition

−∞ < x0 < · · · < xn < ∞

is taken so that x1 → −∞, xn → ∞ and the increments |xi − xi−1| → 0. The point x∗
i is an arbitrary

sample point in the interval [xi−xi−1]. If FX is a step function, it gives us a summation at the jumps,
and if FX is absolutely continuous, it is integration against the density function.

1.4 Example Problems

Problem 1.1. Suppose we are cutting a stick of length 1 randomly and denote by X the cutting
point. The random variable X is continuous with range [0, 1].

1. Approximate X with a discrete uniform distribution on { 1
10 ,

2
10 . . . , 1}. Draw the PMF and CDF.

2. Approximate X with a discrete uniform distribution on { 1
20 ,

2
20 . . . , 1}. Draw the PMF and CDF.

3. Approximate X with a discrete uniform distribution on { 1
100 ,

2
100 . . . , 1}. Draw the PMF and

CDF.

4. Approximate X with a discrete uniform distribution on { 1
10000 ,

2
10000 . . . , 1}. Draw the PMF and

CDF.

Solution 1.1.

1. We have fX(x) = 1
10 for all x ∈ { 1

10 ,
2
10 . . . , 1}.
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2. We have fX(x) = 1
20 for all { 1

20 ,
2
20 . . . , 1}.
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3. We have fX(x) = 1
100 for all x ∈ { 1

100 ,
2

100 . . . , 1}
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4. We have fX(x) = 1
10000 for all x ∈ { 1

10000 ,
2

10000 . . . , 1}.
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Remark 7. Notice that the PMF gradually tends to 0 and the CDF gets closer to CDF of the
continuous uniform distribution on [0, 1].

Problem 1.2. Suppose that X is a continuous random variable with PDF

fX(x) =

{
cx(1− x) if 0 ≤ x ≤ 1,

0 otherwise

1. Compute c so that this is a valid pdf.

2. Compute the cdf FX(x).

3. Compute P(1/4 ≤ X ≤ 3/4)

Solution 1.2.

1. We need
∫∞
−∞ fX(x) dx = 1, so∫ 1

0

cx(1− x) dx =
c

6
= 1 =⇒ c = 6.
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2. The CDF FX(x) is

FX(x) =

∫ x

−∞
fX(t) dt =

∫ x

0

6t(1− t) dt = 3x2 − 2x3, x ∈ [0, 1]

and FX(x) = 0 for x ≤ 0 and FX(x) = 1 for x ≥ 1.
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3. We compute the probability using the CDF:

P
(
1

4
≤ X ≤ 3

4

)
cont.
= P

(
1

4
< X ≤ 3

4

)
= P(X ≤ 3/4)− P (X ≤ 1/4)

= FX(3/4)− FX(1/4) = 11/16.
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Alternative Solution: By integrating the PDF

P(1/4 ≤ X ≤ 3/4) =

∫ 3/4

1/4

fX(t) dt = 11/16.
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Problem 1.3. Suppose the random variable X has PDF

fX(x) =

{
6x(1− x) if 0 ≤ x ≤ 1,

0 otherwise

Compute E(X) and Var(X).

Solution 1.3. By definition,

E(X) =

∫ 1

0

x · 6x(1− x) dx =
1

2

and

E(X2) =

∫ 1

0

x2 · 6x(1− x) dx =
3

10
.

Therefore,

Var(X) = E(X2)− (E(X))2 =
3

10
−

(
1

2

)2

=
1

20
= 0.05

Problem 1.4. Suppose X has PDF fX(x), and fX is an even function about the origin on R (i.e.
fX(x) = fX(−x)). If E[X] is well defined, show that E[X] = 0.

Solution 1.4. Since fX(x) = fX(−x), the “positive and negative areas” cancel since x · fX(x) is an
odd function. To see this directly, notice that

E(X) =

∫ ∞

−∞
x · fX(x) dx

=

∫ 0

−∞
x · fX(x) dx+

∫ ∞

0

x · fX(x) dx

=

∫ ∞

0

(−x) fX(−x)︸ ︷︷ ︸
=fX(x)

dx+

∫ ∞

0

x · fX(x) dx

= −
∫ ∞

0

x · fX(x) dx+

∫ ∞

0

x · fX(x) dx

= 0

Problem 1.5. Let X be a continuous random variable with CDF FX(x) = P(X ≤ x) and let g : R 7→
R be an increasing function with inverse g−1. Compute FY (y) = P(Y ≤ y).

Solution 1.5. We can write the CDF of Y in terms of the CDF of X by

FY (y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g−1(y)).

Remark 8. Notice that the CDF of Y = g(X) is not g(FX(x)).

Problem 1.6. Let X be a continuous random variable with the following pdf:

fX(x) =

{
1
4 0 < x ≤ 4,

0 otherwise
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1. Find the CDF of X.

2. Let Y = X−1. Find the CDF Y .

3. Find the PDF of Y .

Solution 1.6.

1. Outside the support of X, we have FX(x) = 0 for x < 0 and FX(x) = 1 for x > 4. For x in the
support of X, i.e. x ∈ [0, 4]

FX(x) =

∫ x

0

1

4
=

x

4
.

In summary,

FX(x) =


0, if x < 0
x
4 , if 0 ≤ x < 4

1, if 4 ≤ x

2. Notice that supp(X) = [0, 4]. Therefore, the support of Y = X−1 is

0 ≤ X ≤ 4 =⇒ ∞ ≥ X−1 ≥ 1

4
=⇒ supp(Y ) =

[1
4
,∞

)
.

For y in the support of Y , i.e. y ∈
[
1
4 ,∞

)
FY (y) = P(Y ≤ y) = P(X−1 ≤ y) = P(X >

1

y
) = 1− P(X ≤ 1

y
) = 1− FX(y−1) = 1− 1

4y
.

In summary,

FY (y) =

{
0, if y < 1

4

1− 1
4y , if 1

4 ≤ y

3. To get the PDF of Y , we simply differentiate FY (y) to conclude that

fY (y) = F ′
Y (y) =

d

dy

(
1− 1

4y

)
=

1

4y2
for y ∈

[1
4
,∞

)
.

and fY (y) = 0 for y ̸∈
[
1
4 ,∞

)
.

Alternative Solution: We can compute the PDF of f using the change of variables formula. We
have g(x) = 1

x , so g′(x) = − 1
x2 and g−1(x) = 1

x . Therefore, for y ∈ [ 14 ,∞),

fY (y) =
1

|g′(g−1(y))|
fX(g−1(y)) =

1

| − 1
(y−1)2 |

1

4
=

1

4y2
.

Problem 1.7. Suppose a continuous random variable X has probability density function

fX(x) =

{
1− |x| −1 ≤ x ≤ 1

0 otherwise

1. Find the CDF of X.

2. Let Y = X2. Find the CDF Y .
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3. Find the PDF of Y .

Solution 1.7.

1. We can rewrite the PDF as

fX(x) =


1 + x −1 ≤ x < 0

1− x 0 ≤ x < 1

0 otherwise

Outside the support of X, we have FX(x) = 0 for x < −1 and FX(x) = 1 for x > 1. We have
two cases for x in the support of X,

(a) If x ∈ [−1, 0]

FX(x) =

∫ x

−1

1 + t dt = t+
t2

2

∣∣∣x
−1

= x+
x2

2
+

1

2
.

(b) If x ∈ [0, 1]

FX(x) =

∫ 0

−1

1 + t dt+

∫ x

0

1− t dt =
(
t+

t2

2

)∣∣∣0
−1

+
(
t− t2

2

)∣∣∣x
0
= x− x2

2
+

1

2
.

In summary,

FX(x) =



0 x < −1

x+
1

2
x2 +

1

2
−1 ≤ x < 0

x− 1

2
x2 +

1

2
0 ≤ x < 1

1 1 ≤ x

2. Notice that supp(X) = [−1, 1]. Therefore, the support of Y = X2 is

−1 ≤ X ≤ 1 =⇒ 0 ≤ X2 ≤ 1 =⇒ supp(Y ) = [0, 1].

Outside of the support, for y < 0 we have FY (y) = 0 and for y > 1 we have FY (y) = 1. In the
support of Y , we have

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√
y ≤ X ≤ √

y)

= FX(
√
y)− FX(−√

y)

=

(
√
y − 1

2
y +

1

2

)
−
(
−√

y +
1

2
y +

1

2

)
= 2

√
y − y.

In summary,

FY (y) =


0 y < 0

2
√
y − y 0 ≤ y < 1

1 1 ≤ y

3. To get the PDF of Y , we simply differentiate FY (y) to conclude that

fY (y) = F ′
Y (y) =

d

dy

(
2
√
y − y

)
=

1
√
y
− 1 for y ∈ [0, 1].

and fY (y) = 0 for y ̸∈ [0, 1].

Remark 9. The function g(x) = x2 is not increasing on the supp(X) = [−1, 1] so we can’t use the
change of variables formula.
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1.5 Proofs of Key Results

Problem 1.8. Suppose X is a continuous random variable. Show that

P(X = x) = 0

and
P(a < X ≤ b) = P(a < X < b) = P(a ≤ X < b) = P(a ≤ X ≤ b) = FX(b)− FX(a).

Solution 1.8. If X is a continuous random variable, then for any x ∈ R,

P(X = x) = lim
ϵ→0

P(x− ϵ < X ≤ x) = FX(x)− FX(x−) = 0

by continuity of FX . This implies that the inequalities don’t matter for continuous random variables

P(a < X ≤ b) = P(a < X < b) = P(a ≤ X < b) = P(a ≤ X ≤ b) = FX(b)− FX(a).

Remark 10. If X is discrete, then the inequalities matter, so

P(a < X ≤ b), P(a < X < b), P(a ≤ X < b), P(a ≤ X ≤ b)

can be different since P(X = a) or P(X = b) may be non-zero.

Problem 1.9. Prove the change of variables formula in Theorem 1.

Solution 1.9.

Strictly Increasing: We first consider the case that g is strictly increasing. If g is strictly increas-
ing, then

FY (y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) =

∫ g−1(y)

−∞
fX(t) dt.

Therefore, we can use the fundamental theorem of calculus and the chain rule to see that for points in
the interior of the support of Y ,

fY (y) =
d

dy

∫ g−1(y)

−∞
fX(t) dt = fX(g−1(y))

d

dy
g−1(y) =

1

g′(g−1(y))
fX(g−1(y)).

Since g is strictly increasing, g′ > 0, so

fY (y) =
1

|g′(g−1(y))|
fX(g−1(y)), y ∈ supp(Y ).

Strictly Decreasing: We now consider the case that g is strictly decreasing. If g is strictly decreasing,
then

FY (y) = P(g(X) ≤ y) = P(X ≥ g−1(y)) = 1− P(X ≤ g−1(y)) = 1− 1−
∫ g−1(y)

−∞
fX(t) dt.

Therefore, we can use the fundamental theorem of calculus and the chain rule to see that for points in
the interior of the support of Y ,

fY (y) =
d

dy

(
1−

∫ g−1(y)

−∞
fX(t) dt

)
= −fX(g−1(y))

d

dy
g−1(y) = − 1

g′(g−1(y))
fX(g−1(y)).

Since g is strictly increasing, g′ < 0, so

fY (y) =
1

|g′(g−1(y))|
fX(g−1(y)), y ∈ supp(Y ).
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2 Important Continuous Random Variables

2.1 Uniform Distribution: Unif(a, b)

The uniform distribution models variables with equally likely outcomes on an interval. This is the
continuous analogue of the discrete uniform distribution.

Definition 6 (Uniform Distribution). We say that X has a continuous uniform distribution on (a, b)
if X has PDF

fX(x) =

{
1

b−a x ∈ [a, b],

0 otherwise

This is denoted by
X ∼ Unif(a, b).

Example 1. The following experiments can be modeled by a continuous uniform distribution:

Experiment X Distribution
Cutting a stick of length 1 at a random position the location of the cut Unif(0, 1)
Spinning a wheel Location of spinner Unif(0, 2π)

2.1.1 Properties

1. Sampling uniformly on the intervals (a, b), [a, b), (a, b] and [a, b] are all equivalent.

2. Mean and Variance: If X ∼ U(a, b) then

E[X] =
a+ b

2
Var(X) =

(b− a)2

12
.

2.2 Exponential Distribution: Exp(θ)

The exponential distribution models the time between occurrences of a Poisson process with rate
parameter λ = 1

θ expressed in occurrences per time. The mean parameter θ is expressed in time per
occurrence. This is the continuous time analogue of the geometric distribution.

Definition 7 (Exponential Distribution). We say that X has an exponential distribution with mean
parameter θ if X has PDF

fX(x) =

{
1
θ e

− x
θ x ≥ 0,

0 x < 0

This is denoted by X ∼ Exp(θ).

Example 2. The following experiments can be modeled by a exponential distribution:

Experiment X Distribution
Busses arriving at rate 3 per hour hours until a bus arrives Exp(3−1)
Busses arriving every 15 minutes minutes until a bus arrives Exp(15)
Emails arrive at a rate of 20 per hour hours until the next email Exp(20−1)

Remark 11. We can also parameterize the exponential random variable with the rate parameter. We
say that X has an exponential distribution with rate parameter λ if X has PDF

fX(x) =

{
λe−λx x ≥ 0,

0 x < 0

This is denoted by X ∼ Expo(λ) in the textbook. Unless otherwise stated, we will take the mean
parametrization as the standard one in this course since that is the one given in your formula sheet.
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2.2.1 Poisson Process

We now introduce a stochastic process such that the number of points in any time interval is given by
a Poisson random variable. It is used to model random events that happen at a consistent rate and
generalizes the Poisson random variable to variable times.

Definition 8 (Poisson Process). A stochastic process {N(t)}t≥0 is called a Poisson process with
rate λ > 0 if

(1) N(0) = 0.

(2) It has independent increments. i.e., for any 0 ≤ t0 < t1 < · · · < tn, the increments

N(t1)−N(t0), N(t2)−N(t1), . . . , N(tn)−N(tn−1)

are all independent.

(3) For any t ≥ 0 and h > 0, the increment N(t+h)−N(t) has a Poisson distribution with parameter
λh, i.e.,

P (N(t+ h)−N(t) = n) = e−λh (λh)
n

n!
, n = 0, 1, 2, . . .

On any time interval of length h, the number of points has a Poisson distribution with mean λh,
so the number of occurrences is proportional to the length of time.

2.2.2 Properties

1. Parameters: If a Poisson process has rate λ occurrences per time, then θ = 1
λ is the mean time

per occurrence.

2. Mean and Variance: If X ∼ Exp(θ) then

E[X] = θ Var(X) = θ2.

3. Memoryless Property: The exponential distribution forgets how long we have waited already.

Theorem 2 (Memoryless property of Exp(θ))

If X ∼ Exp(θ), then
P(X > s+ t|X > s) = P(X > t).

In fact, the exponential distribution is the only continuous random variable with this property.

4. Computations with the exponential distribution can be expressed using the Gamma function

Definition 9 (Gamma function). The integral

Γ(α) =

∫ ∞

0

yα−1e−ydy, α > 0

is called the gamma function of α.

The Gamma function is a continuous function that interpolates the factorial function and it
satisfies the following nice properties

(a) Γ(n) = (n− 1)! for n ∈ N
(b) Γ(1/2) =

√
π

(c) Γ(α) = (α− 1)Γ(α− 1) for α > 1
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2.3 Normal Distribution: N(µ, σ2)

The normal distribution, one of the most widely and most important continuous distributions in theory
and applications. A lot of data is unimodal, symmetric around the mean µ, and the majority of data
is “near µ” and few are “far from µ”.

Definition 10 (Gaussian Distribution). We say that X has a normal distribution (or Gaussian dis-
tribution) with mean µ and variance σ2 if X has PDF

fX(x) =
1√
2πσ2

e
−(x−µ)2

2σ2 , x ∈ R.

This is denoted by
X ∼ N(µ, σ2).

Example 3. The following experiments can be modeled by a continuous uniform distribution:

Experiment X Distribution
Exams with 70% average and standard dev 20% the grade of a random student N(0.7, 0.22)
IQ test (average IQ of 100 and 15 standard dev) IQ of a random person N(100, 152)

Example 4. Several PDFs of normally distributed random variables are below. The mean is where
the peak of the PDF is, and the variance encodes how spread out the PDF is.

2.3.1 Properties

1. Mean and Variance: If X ∼ N(µ, σ2) then

E[X] = µ Var(X) = σ2.

2. Symmetric about its mean: If X ∼ N(µ, σ2)

P(X ≤ µ− t) = P(X ≥ µ+ t).

3. Density is unimodal: Peak is at µ.

4. 68-95-99.7 Rule: If X ∼ N(µ, σ2), then

P(µ− σ ≤ X ≤ µ+ σ) ≈ 0.68 68% values lie within 1 standard deviation of the mean

P(µ− 2σ ≤ X ≤ µ+ 2σ) ≈ 0.95 95% values lie within 2 standard deviation of the mean

P(µ−3σ ≤ X ≤ µ+3σ) ≈ 0.997 99.7% values lie within 3 standard deviation of the mean .
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2.3.2 Standard Normal Distribution: N(0, 1)

Definition 11 (Standard Gaussian). We say that Z follows the standard normal distribution if Z ∼
N(0, 1). The PDF of the standard normal random variable is denoted

φ(x) =
1√
2π

e
−x2

2 ,

and the CDF of a standard normal random variable is denoted

Φ(x) =

∫ x

−∞

1√
2π

e
−y2

2 dy.

Every normally distributed random can be transformed into a normally distributed random vari-
ables through a linear transformation. This technique is called standardization.

Theorem 3 (Standardizing normal random variables)

If X ∼ N(µ, σ2), then

Z =
X − µ

σ
∼ N(0, 1).

Remark 12. We use the transformation Z = X−µ
σ to go from X to a standard normal. And we use

the transformation X = µ+ σZ to go from a standard normal to X.

2.4 Example Problems

Problem 2.1. Suppose X ∼ Unif(0, 1), and that Y = 2
X − 1. What is the support of Y ?

Solution 2.1. Since supp(X) = [0, 1], we have

0 ≤ X ≤ 1 =⇒ ∞ >
2

X
≥ 2 =⇒ ∞ >

2

X
− 1 ≥ 1

so supp(Y ) = [1,∞).

Problem 2.2. Suppose that the angle measured from the principal axis to the point of a spinner is
uniformly distributed on [0, 2π]. You win the prize you want if the point lands in [ 3π4 , 3π

2 ]. Given that
the point will stop in the bottom half of the circle, what is the probability that you win the prize you
want.

Solution 2.2. If X denotes the angle of the spinning wheel, then X ∼ U(0, 2π). Note that the bottom
half is the circle [π, 2π]. Denote by A1, A2 the events A1 = {X ∈ [π, 2π]} and A2 = {X ∈ [ 3π4 , 3π

2 ]}.
The desired probability is

P(A2 | A1) =
P(A1 ∩A2)

P(A1)
=

P(X ∈ [π, 2π] ∩ [ 3π4 , 3π
2 ])

P(X ∈ [π, 2π])

=
P(X ∈ [π, 3π

2 ])

P(X ∈ [π, 2π])

=
1
2π · ( 3π2 − π)
1
2π · (2π − π)

=
1/4

1/2
= 1/2.
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Problem 2.3. Nupur decided to enjoy a relaxing summer away from student housing, so she rented
a place in Simcoe, Ontario. However, the busses there are far and few between. Suppose busses arrive
according to a Poisson process with an average of 3 busses per hour.

1. Find the probability of waiting at least 15 minutes.

2. Find the probability of waiting at least another 15 minutes given that you have already been
waiting for 6 minutes.

Solution 2.3.

Part 1: If X denotes the waiting time until the first bus in minutes, then the waiting time parameter
is θ = 20 min per bus so X ∼ Exp(20), and

P(X ≥ 15) =

∫ ∞

15

1

20
e−

1
20xdx = e−

3
60 ·15 = e−3/4

Alternative Solution: If X denotes the waiting time until the first bus in hours, then the waiting
time parameter is θ = 1

3 hours per bus (rate λ is 3 busses per hour) X ∼ Exp(3−1). Hence, the
probability of waiting at least 15 minutes is

P(X ≥ 1/4) =

∫ ∞

1/4

3e−3xdx = e−3· 14 .

Part 2: By the memoryless property, we have

P(X ≥ 15 + 6 |X ≥ 6) = P(X ≥ 15) = e−3/4

from above.

Problem 2.4. Exponential distribution is also very useful in reliability engineering. The lifetime of
a seat belt motor on a 1994 Saturn GL is known to follow an exponential distribution with mean 14
years.

1. What is the standard deviation of the lifetime of a seat belt motor on a 1994 Saturn GL?

2. Compute the probability that the lifetime of the seat belt motor will last more than 6 years.

3. If a seat belt motor has lasted 14 years, what is the probability that it will last another 6 years?

Solution 2.4. In this problem we are given E[X] = 14 and X has exponential distribution so X ∼
Exp(14).

1. We have Var(X) = 142, so the standard deviation is 14 years.

2. We have

P(X ≥ 6) =

∫ ∞

6

1

14
e−

1
14 t dt = e−

6
14 .

3. By the memoryless property, we have

P(X ≥ 6 + 14 |X ≥ 14) = P(X ≥ 6) = e−
6
14 .
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Problem 2.5. Suppose the waiting time X until Mukhtar’s next bus arrives follows an exponential
distribution with parameter θ = 1. What’s the waiting time w so that Mukhtar doesn’t have to wait
longer than w with probability 50%?

Solution 2.5. We know

FX(x) = P(X ≤ x) =

∫ x

0

e−t dt = 1− e−x

for x ≥ 0 and 0 otherwise. This function is strictly increasing on x > 0, so we can use the classical
inverse. We want w such that P(X ≤ w) = 0.5, or

FX(w) = 0.5 ⇔ 1− e−w = 0.5 ⇔ w = log(2) ≈ 0.693.

So with probability 50% Mukhtar won’t have to wait longer than log(2). In other words, log(2) is the
median of the distribution of X.

Remark 13. We can repeat this computation for general θ ̸= 1. The median in this case will be given
by θ log(2). Since log(2) < 1 this implies that the median of the exponential is always below the mean.

Problem 2.6. Uranium 238 emits particles measured by a Geiger counter at a rate of 50 per second.
Assume that the number of particles measured by a Geiger counter follows a Poisson process. Let X
denote the amount of time in seconds between when the first and second particles are measured. Find
E[X]

Solution 2.6. Intuitively, since the rates are homogeneous and the increments are independent, the
time between the first and second particle is equal in distribution to the time between the first particle.
Therefore, the waiting time parameter θ is 1

50 seconds per occurrence, so X ∼ Exp(50−1). Therefore,
E[X] = θ = 1

50 .

We carefully explain how the homogeneous and independence property are used in this problem.
Let X be the time of the first particle, Y be the time from the first to the second particle, and N(t)
be the number of particles by time t. Clearly, Z = X + Y is the time of the second particle.

We know X ∼ Exp(50−1) and N(t) ∼ Poi(50t). Using the same logic as in the derivation of the
Poisson process (see Problem (2.10)),

FZ(t) = P(X + Y ≤ t) = 1− P(X + Y > t) = 1− P (N(t) ≤ 1) = 1− (e−50t + e−50t(50t))

So Z = X + Y has density

fZ(t) =
d

dt
P(X + Y ≤ t) = − d

dt

[
e−50t(1 + 50t)

]
= t502e−50t

Therefore, by an integration by parts

E[Z] =

∫ ∞

−∞
z · fZ(z)dz = 50

∫ ∞

0

z2 · 50e−50zdz = 50
2

502
=

2

50

and the linearity of expectation implies that

E[Y ] = E[Z −X] = E[Z]− E[X] =
2

50
− 1

50
=

1

50
.
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Problem 2.7. At a super busy coffee chain, customers arrive according to a Poisson process at a rate
of λ = 5 customers per minute.

1. Find the probability that there are more than 2 customers in one minute.

2. Suppose you record the number of customers in 5 consecutive one-minute intervals. What is the
probability that in at least 3 of them there were more than 2 customers?

3. Find the probability that a minute with more than 2 customers actually had 6 customers

4. Suppose you are waiting until finally, there is one minute with more than 2 customers. Denote
by X the the number of minutes you need to wait. Find the PMF of X.

5. Suppose in 3 minutes, there were n customers. Find the probability that x of these came in the
first two minutes.

Solution 2.7. Let t be measured in minutes, and the rate is λ = 5 customers per minute.

1. If X is the number of customers in one minute, then X ∼ Poi(5 · 1). Thus,

p = P(X > 2) = 1− P(X ≤ 2)

= 1− P(X = 0)− P(X = 1)− P(X = 2)

= 1− e−5
(
1 + 5 +

52

2

)
≈ 0.875

2. Let Y be the number of one-minute intervals with more than two customers, then Y ∼ Bin(5, p)
with p from earlier. Thus,

P(Y ≥ 3) = P(Y = 3) + P(Y = 4) + P(Y = 5)

=

(
5

3

)
p3(1− p)2 +

(
5

4

)
p4(1− p) +

(
5

5

)
p5(1− p)0 ≈ 0.984

3. Let X be the number of customers in one minute. Thus,

P(X = 6 |X > 2) =
P(X = 6 and X > 2)

P(X > 2)
=

P(X = 6)

P(X > 2)
=

e−5 56

6!

0.875
≈ 0.167

4. Let Z be the number of minutes until first minute with more than 2 customers, then Z ∼ Geo(p)
with p from earlier. Thus,

fZ(x) = P(Z = x) = (1− p)xp, x = 0, 1, 2, . . .

5. We want to fine

P(x in first 2min | n in 3min) =
P(x in first 2min and n in 3min)

P(n in 3min)
.

We know that

� Denominator: The number of customers in 3 minutes follows a Poi(5 · 3) distribution, so

P(n in 3 min) = e−15 15
n

n!
, n = 0, 1, 2, . . .
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� Numerator: Since non-overlapping intervals are independent,

P(x in first 2min and n in 3min) = P(x in first 2min and n− x in last min)

= P(x in first 2min) · P(n− x in last min)

= e−10 10
x

x!
· e−5 5n−x

(n− x)!

Combining and simplifying gives

P(x in first 2min | n in 3min) =

(
n

x

)(
2

3

)x (
1

3

)n−x

, x = 0, 1, . . . , n,

which is the PMF of Bin(n, 2/3).

Problem 2.8. A continuous random variableX is said to have a Gamma distribution with parameters
α > 0 and β > 0 if it has PDF

fX(x) =

{
1

Γ(α)βαx
α−1e−

x
β x ≥ 0

0 otherwise

Use the properties of the Gamma function, namely Γ(α) = (α− 1)Γ(α− 1) for α > 1, to obtain E[X]
and Var(x).

Solution 2.8. We can solve this problem without even knowing what the Γ(α) function is. We use a
trick that we have used many times, which involves rewriting the expression as an integral of the PDF
which sums to 1.

Expected Value: By definition,

E[X] =

∫ ∞

0

x · 1

Γ(α)βα
xα−1e−

x
β dx =

∫ ∞

0

1

Γ(α)βα
xαe−

x
β dx

=
βΓ(α+ 1)

Γ(α)

∫ ∞

0

1

Γ(α+ 1)βα+1
xαe−

x
β dx︸ ︷︷ ︸

=1 integral of the PDF of Γ(α + 1, β) r.v.

where we multiplied and divided by βΓ(α+ 1) to match the normalization terms. Using the recursive
property of the Γ function, we see that

E[X] =
βΓ(α+ 1)

Γ(α)
=

βαΓ(α)

Γ(α)
= βα.

Variance: A similar computation as above implies that

E[X2] =

∫ ∞

0

x2 · 1

Γ(α)βα
xα−1e−

x
β dx =

∫ ∞

0

x2 · 1

Γ(α)βα
xα+1e−

x
β dx

=
β2Γ(α+ 2)

Γ(α)

∫ ∞

0

1

Γ(α+ 2)βα+2
xα+1e−

x
β dx︸ ︷︷ ︸

=1 integral of the PDF of Γ(α + 2, β) r.v.

=
β2Γ(α+ 2)

Γ(α)
.
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Next, using the recursive properties of the Γ function,

E[X2] =
β2Γ(α+ 2)

Γ(α)
=

β2(α+ 1)Γ(α+ 1)

Γ(α)
=

β2(α+ 1)αΓ(α)

Γ(α)
= β2(α+ 1)α.

Therefore,
Var(x) = E[X2]− (E[X])2 = β2(α+ 1)α− β2α2 = β2α.

Remark 14. Notice that then α = 1, then the PDF is simply the exponential distribution. In fact,
the relation is even deeper and it can be shown that the sum of n independent Exp(β) distributions
has a Γ(n, β) distribution.

2.5 Proofs of Key Results

Problem 2.9. Compute the mean and variance of X ∼ Unif(a, b).

Solution 2.9. We can directly compute

E(X) =

∫ ∞

−∞
xf(x) dx =

∫ b

a

x · 1

b− a
dx

=
1

2

b2 − a2

b− a
=

(b− a)(b+ a)

2(b− a)
=

a+ b

2
.

To compute the variance, we have

E(X2) =

∫ ∞

−∞
x2f(x) dx =

∫ b

a

x2 1

b− a
dx

=
b3 − a3

3(b− a)
=

(b− a)(b2 + ab+ a2)

3(b− a)
=

b2 + ab+ a2

3
.

so after some algebra,

Var(X) = E(X2)− E(X)2 =
b2 + ab+ a2

3
− (a+ b)2

4
=

(b− a)2

12
.

Problem 2.10. Let N(t) be a Poisson process with rate λ occurrences per time interval. If X is the
length of time until the first occurrence, show that X ∼ Exp(λ−1).

Solution 2.10. Since P(X ≤ 0) = 0, it remains to consider x > 0. We start by computing the CDF
of X, which is the length of time until first event occurs

FX(t) = P(X ≤ t)

= P(time to 1st occurrence ≤ t)

= 1− P(time to first occurrence > t)

= 1− P(no occurrence between (0, t))

We know how to model the number of event occurrences between time (0, t) since it is Poi(λt). Let
N(t) ∼ Poi(λt). Then

FX(t) = 1− P(no occurrence between (0, t))

= 1− P(N(t) = 0)

= 1− e−λt(λt)0

0!

= 1− e−λt.
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So we have FX(t) = 1− exp(−λt) for t > 0 and FX(t) = 0 otherwise. We can take the derivative with
respect to t for t > 0, to obtain the PDF

fX(t) =
d

dt
FX(t) = λ exp(−λt)

and fX(t) = 0 for t ≤ 0. We recognize this PDF as the one corresponding to Exp(λ−1) (with waiting
time parameter θ = 1

λ ).

Remark 15. The (actual) Poisson process N(t) counts the number of occurrences up to time t. While
X is the waiting time until the first occurrence. By independent increments and the homogeneous
property, the waiting time between occurrences has the same distribution as the waiting time until
the first occurrence. This means that the exponential distribution Exp(λ−1) models the waiting time
between each event occurrence in a Poisson distribution with rate λ.

Problem 2.11. Let n ≥ 1. Show that

Γ(n) =

∫ ∞

0

yn−1e−ydy = (n− 1)!.

Solution 2.11. This follows from repeated integration by parts. Let n ≥ 1, we have

Γ(n) =

∫ ∞

0

yn−1e−ydy.

Integrating by parts we see that

Γ(n) =

∫ ∞

0

yn−1e−ydy = −yn−1e−y

∣∣∣∣∞
0

+ (n− 1)

∫ ∞

0

yn−2e−ydy = (n− 1)Γ(n− 1).

Repeating this inductively implies that

Γ(n) = (n− 1)Γ(n− 1) = (n− 1)(n− 2)Γ(n− 2) = · · · = (n− 1)(n− 2) · · · 3 · 2 · Γ(1) = n!

since Γ(1) = 1 (using the fact that the integral of the PDF of X ∼ Exp(1) is 1).

Remark 16. Notice that the integration by parts computation holds for α > 1 which are not neces-
sarily integer valued to conclude that Γ(α) = (α− 1)Γ(α− 1). The problem is that the inductive step
might not lead to a nice number since Γ(x) for x < 1 doesn’t necessarily simplify.

Problem 2.12. Compute the mean and variance of X ∼ Exp(θ).

Solution 2.12. We use the change of variable x = yθ with dx = θdy

E[X] =

∫ ∞

0

x · 1
θ
e−

x
θ dx

(x=yθ)
=

∫ ∞

0

ye−yθdy

= θ

∫ ∞

0

ye−ydy︸ ︷︷ ︸
=Γ(2)

= θΓ(2) = θ · (1!) = θ.
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To compute the variance, we have

E[X2] =

∫ ∞

0

x2 · 1
θ
e−

x
θ dx

(x=yθ)
=

∫ ∞

0

θy2e−yθdy

= θ2
∫ ∞

0

y3−1e−ydy︸ ︷︷ ︸
=Γ(3)

= θ2Γ(3) = θ · (2!) = 2θ2.

so
Var(X) = E[X2]− E[X]2 = 2θ2 − θ2 = θ2

Alternative Solution: We can also integrate by parts directly without using the Gamma function.
Starting with

E[X] =

∫ ∞

0

x · 1
θ
e−

x
θ dx

we have by integrating by parts

E[X] =

∫ ∞

0

x · 1
θ
e−

x
θ dx =

x

θ
· (−θe−

x
θ )− 1

θ
θ2e−

x
θ

∣∣∣∣∞
0

= θ.

Next, to compute

E[X2] =

∫ ∞

0

x2 · 1
θ
e−

x
θ dx

we have by integrating by parts

E[X2] =

∫ ∞

0

x2 · 1
θ
e−

x
θ dx =

x2

θ
· (−θe−

x
θ )− 2x

θ
· θ2e− x

θ +
2

θ
· (−θ3e−

x
θ )

∣∣∣∣∞
0

= 2θ2.

Problem 2.13. Prove the memoryless property: Theorem 2.

Solution 2.13. Recall the CDF of X ∼ Exp(θ) is

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(t)dt =

∫ x

0

θ−1e−t/θ dt = 1− e−x/θ, x > 0.

Therefore,
P(X > x) = 1− P(X ≤ x) = 1− FX(x) = e−x/θ.

Hence,

P(X > s+ t |X > s) =
P(X > s+ t and X > s)

P(X > s)

=
P(X > s+ t)

P(X > s)
=

e−(s+t)/θ

e−s/θ

= e−t/θ = P(X > t)

as desired.

Problem 2.14. Prove that Γ( 12 ) =
√
π.
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Solution 2.14. We have

Γ
(1
2

)
=

∫ ∞

0

y
1
2−1e−ydy =

∫ ∞

0

y−
1
2 e−ydy

We can do the change of variables y = x2

2 , dy = x dx so

Γ
(1
2

)
=

√
2

∫ ∞

0

e−
x2

2 dx.

By Fubini’s theorem and a change of variables into polar coordinates

Γ
(1
2

)2

= 2

(∫ ∞

0

e−
x2

2 dx

)2

= 2

∫ ∞

0

e−
x2

2 dx

∫ ∞

0

e−
y2

2 dy = 2

∫ ∞

0

∫ ∞

0

e−
x2+y2

2 dxdy

= 2

∫ π
2

0

e−
r2

2 r drdθ

= 2

∫ π
2

0

dθ = π.

So Γ
(

1
2

)
=

√
π.

Remark 17. A modification of this argument can be used to compute the normalization constant of
a standard Gaussian random variable.

Problem 2.15. Prove Theorem 3.

Solution 2.15. Our goal is to show that if X ∼ N(µ, σ2), then Z = X−µ
σ is normally distributed. We

explicitly compute the PDF of Z. We 1have

FZ(z) = P(Z ≤ z) = P
(
X − µ

σ
≤ z

)
= P(X ≤ σz + µ).

By the chain rule, for all z ∈ R,

F ′
Z(z) =

d

dz
FX(σz + µ) = σfX(σz + µ) =

σ√
2πσ2

e
−(σz+µ−µ)2

2σ2 =
1√
2π

e
−x2

2 = φ(x)

which we recognize as the PDF of the standard normal distribution. In particular, we have shown that
Z = X−µ

σ has standard normal distribution.

Problem 2.16. Show that

φ(x) =
1√
2π

e
−x2

2

is a valid PDF.

Solution 2.16. The function φ(x) is clearly non-negative. We now have to check that it integrates
to 1. This is a standard problem motivating the usage of polar coordinates. It suffices to show that(∫ ∞

−∞
φ(x) dx

)2

= 1.
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By Fubini’s theorem,(∫ ∞

−∞
φ(x) dx

)2

=

(∫ ∞

−∞
φ(x) dx

)(∫ ∞

−∞
φ(y) dy

)
=

1

2π

∫∫
R2

e
−(x2+y2)

2 dxdy.

Using the change of variables x = r cos(θ) and y = r sin(θ), we have that

dxdy =

∣∣∣∣cos(θ) −r sin(θ)
sin(θ) r cos(θ)

∣∣∣∣ drdθ = |r cos2(θ) + r sin2(θ)|drdθ = rdrdθ

and x, y ∈ R2 implies that r ≥ 0 and θ ∈ [0, 2π), so

1

2π

∫∫
R2

e
−(x2+y2)

2 dxdy =
1

2π

∫ 2π

0

∫ ∞

0

re
−(r2 cos2(θ)+r2 sin2(θ))

2 drdθ

=
1

2π

∫ 2π

0

∫ ∞

0

re
−r2

2 drdθ

=
1

2π

∫ 2π

0

[
− e−

r2

2

]∞
0

dθ

=
1

2π

∫ 2π

0

dθ = 1

as required.

Problem 2.17. If X ∼ N(µ, σ2) show that

E[X] = µ Var(X) = σ2.

Solution 2.17. We first do the computations when Z ∼ N(0, 1). We have

E[Z] =
1√
2π

∫ ∞

−∞
xe

−x2

2 = 0

because xe
−x2

2 is an odd function. Next, to compute the second moment, we can integrate by parts

E[Z2] =
1√
2π

∫ ∞

−∞
x2e

−x2

2 = − x√
2π

e
−x2

2

∣∣∣∣∞
−∞

+
1√
2π

∫ ∞

−∞
e

−x2

2 dx = 1

where the boundary term vanishes because e
−x2

2 goes to zero faster than x and the second term is the
integral of the PDF of a standard normal. Hence we have shown that

E[Z] = 0 Var(Z) = E[Z2]− E[Z]2 = 1.

To get the mean and variance of X ∼ N(µ, σ2), we can use the standardization trick to write

X
d
= σZ + µ. Therefore,

E[X] = E[σZ + µ] = σ E[Z] + µ = µ

and
Var(X) = Var(σZ + µ) = σ2 Var(Z) = σ2.
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