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1 Indicator Functions

The indicator functions provide a fundamental link between probability and expected values. Every-
thing in this section is not unique to discrete random variables and will hold more generally.

Definition 1 (Indicator Function). Let A ⊂ Ω be an event. We say that 1A is the indicator random
variable of the event A. 1A is defined by:

1(ω ∈ A) = 1A(ω) =

{
1 ω ∈ A,

0 ω ∈ Ac
.

Remark 1. The random variable 1A(ω) is a Bernoulli random variable where a success is the occur-
rence of the event A.

1.1 Link Between Probabilities and Expected Values

The indicators link the concepts of expected values with the probability measure,

E[1A] = P(A),

which follows from the simple fact that 1A ∼ Bern(P(A)). This means that we can use indicator
functions to write the theory of probability as the theory of integration, since the the probability of
an event is precisely the integral of the indicator of the event against its probability distribution.

Naturally, the indicator functions behave quite similarly to probabilities and can be used as an
alternative proof of the basic probability identities,

1. Complements: 1Ac = 1− 1A which implies that P(Ac) = 1− P(A)

2. Intersections: 1A∩B = 1A1B , so if A and B are independent, then

P(A ∩B) = E[1A∩B ] = E[1A1B ] = E[1A]E[1B ] = P(A)P(B)

3. Inclusion – Exclusion: 1A∪B = 1A + 1B − 1A∩B which implies that P(A ∪B) = P(A) + P(B)−
P(A ∩B).

4. Union Bound: 1A∪B ≤ 1A + 1B . which implies that P(A ∪ B) ≤ P(A) + P(B) by monotonicity
of the expected value.

1.2 The Expected Value of Counts

Whenever a random variable N takes values in {0, 1, 2, . . . , n}, we can use the linearity of expectation
to compute the expected values in another possibly simpler way. Suppose that N counts the number
of events A1, A2, . . . , An (that are not necessarily independent) that occurred, then

N = N(ω) =

n∑
i=1

1(ω ∈ Ai) =

n∑
i=1

1Ai .

Therefore, by the linearity of expectation

E[N ] =

n∑
i=1

E[1Ai
] =

n∑
i=1

P(Ai).

This trick is especially useful if the joint distribution is tricky to compute, but its marginals are
relatively simpler.
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1.3 Example Problems

Problem 1.1. n passengers board a plane with n seats, where n > 1. Despite every passenger having
an assigned seat, when they board the plane they sit in one of the remaining available seats at random.
Show that the mean and variance of the number of people sitting in the correct seat once everyone is
on board are both 1 (independent of the number n of passengers, weirdly enough).

Solution 1.1. This is called the matching problem. Let N denote the number of people sitting in
the correct of seat once everyone is on board, and let Ai be the event that the ith passenger is in the
correct seat. We have

1Ai
=

{
1 the ith passenger is in the correct seat

0 the ith passenger is not in the correct seat .

Clearly, N =
∑n

i=1 1Ai
. We can now compute the mean and variance.

Expected Value: By linearity of expectation

E[N ] =

n∑
i=1

E[1Ai
] =

n∑
i=1

P(Ai).

By symmetry, we have that the probability that the ith passenger is in the correct seat is

P(Ai) =
1

n

since the seat the ith passenger sits in is uniform over the n possible seats. Therefore,

E[N ] =

n∑
i=1

E[1Ai
] =

n∑
i=1

P(Ai) =

n∑
i=1

1

n
= 1.

Variance: By the linearity of expectation

E[N2] = E
[( n∑

i=1

1Ai

)2]
=

n∑
i,j=1

E[1Ai1Aj ].

We have two cases

1. i = j : Suppose that i = j. Since 1(Ai)1(Ai) = 1 if an only if Ai happens, so we have

E[1Ai
1Ai

] = E[1Ai
] = P(Ai) =

1

n

as we computed before.

2. i ̸= j : Suppose that i ̸= j. Since 1Ai
1Aj

= 1 if an only if Ai and Aj happens

E[1Ai1Aj ] = P(Ai ∩Aj) =
1

n(n− 1)
.

Note that the events Ai and Aj are not independent, so we can’t simply multiply the probabilities.
Instead, we can use the fact that sets the i and j passengers sit in are uniform over the n(n− 1)
possible seats for two passengers.

Page 2 of 7



September 27, 2025 MATT521 – Week 5 Justin Ko

Since there are n(n− 1) ways to pick indices i ̸= j and n ways to pick indices i = j, we have

E[N2] =

n∑
i,j=1

E[1Ai
1Aj

] =
∑
i=j

E[1Ai
1Ai

] +
∑
i ̸=j

E[1Ai
1Aj

] =
n

n
+

n(n− 1)

n(n− 1)
= 2.

Therefore,
Var(N) = E[N2]− (E[N ])2 = 2− 1 = 1.

Remark 2. Notice that the events A1, . . . An are clearly not independent. For example, if A1, . . . , An−1

were to happen then An must be true too since the seat left is the one assigned to the last passenger.
The linearity of expectation allowed us to decompose the random variable into a sum of possibly
dependent events. However, by symmetry we only needed to compute the probability of a single event
A1 in isolation without worrying about the other events A2, . . . , An.

Remark 3. Instead of using the uniform distribution and symmetry, we could argue that

P(Ai) =
(n− 1)!

n!
=

1

n

since there are (n−1)! seating patterns where the ith passenger is in the right seat and n! total seating
patterns (all of which are equally likely). Likewise, we have

P(Ai ∩Aj) =
1

n(n− 1)
=

(n− 2)!

n!
=

1

n(n− 1)
.

since there are (n − 2)! seating patterns where the ith and jth passenger is in the right seat and n!
total seating patterns (all of which are equally likely).

Yet another way to compute the probability is to argue sequentially using the chain rule,

P(Ai ∩Aj) = P(Ai |Aj)P(Aj) =
1

n− 1
· 1
n
=

1

n(n− 1)
,

since the probability the jth passenger sits in the right seat is 1
n and the probability the ith passenger

sits in the right seat given that the jth passenger is in the right seat is 1
n−1 since the jth passenger is

already in the correct seat so there are n− 1 seats left.

Problem 1.2. Show that

1. E[1A] = P(A)

2. Var(1A) = P(A)(1− P(A))

3. Cov(1A,1B) = P(A ∩B)− P(A)P(B)

Solution 1.2. The proof is somewhat straightforward, and it relies on the observation that

1A1B =

{
1 ω ∈ A ∩B,

0 ω ∈ (A ∩B)c

We can now compute the required objects

1.
E(1A) = 1 · P(1A = 1) + 0 · P (1A = 0) = P(A)
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2. We have 12
A = 1 if and only if ω ∈ A, so

E(12
A) = 1 · P(12

A = 1) + 0 · P(12
A = 0) = 1 · P(A) + 0 · P(Ac) = P(A)

so
Var(1A) = E(12

A)− E(1A)
2 = P(A)− P(A)2 = P(A)(1− P(A))

3. Similarly, we have 1A1B = 1 if and only if ω ∈ A ∩B, so

E(1A · 1B) = 1 · P(1A1B = 1) + 0 · P(1A1B = 0) = 1 · P(A ∩B) + 0 · P((A ∩B)c) = P(A ∩B)

giving us
Cov(1A,1B) = E(1A · 1B)− E(1A)E(1B) = P(A ∩B)− P(A)P(B).

1.4 Proofs of Key Results

Problem 1.3. Show the following properties of an indicator function

1. Complements: 1Ac = 1− 1A

2. Intersections: 1A∩B = 1A1B

3. Inclusion – Exclusion: 1A∪B = 1A + 1B − 1A∩B

4. Union Bound: 1A∪B ≤ 1A + 1B .

Solution 1.3. The proofs are quite straightforward and essentially follow from the facts that 1−0 = 1
and 1 · 1 = 1.

1. Complements: On one side we have

1Ac =

{
1 x ∈ AC

0 x ∈ A
.

On the other hand, we have

1− 1A =

{
1− 1 x ∈ A

1− 0 x ∈ Ac
=

{
1 x ∈ AC

0 x ∈ A
,

so both sides are equivalent.

2. Intersections: On one side, we have

1A∩B =

{
1 x ∈ A and x ∈ B

0 otherwise
.

On the other hand, we have

1A∩B =

{
1 · 1 x ∈ A and x ∈ B

0 otherwise

so both sides are equivalent.

The rest of the identities are verified similarly.
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2 The Probabilistic Method

We can use probabilities and expected values to prove the existence of objects in non-random settings.
There are two main principles:

1. The Possibility Principle: Let A be the event that a randomly chosen object in a collection
has a certain property. If P(A) > 0, then there exists an object with the property.

2. The Good Score Principle: Let X be the score of a randomly chosen object. If E(X) ≥ c,
then there is an object with a score of at least c.

Therefore, if we can approximate the probability or expected value then we can show that the object
with the desired property exists. This is a soft approach to prove existence since it does not give a
way to construct an object with the desired property.

2.1 Example Problems

Problem 2.1. A group of 100 people are assigned to 15 committees of size 20, such that each person
serves on 3 committees. Show that there exist 2 committees that have at least 3 people in common

Solution 2.1. Since we don’t need to compute the probabilities or expected values exactly to show
existence, we compute the average number of people in common if we pick two randomly assigned com-
mittees at random. Let X be the number of people in common from the randomly chosen committees.
Let Ai be the event that the ith person is on these two committees, so

X =

100∑
i=1

1Ai .

By the linearity of expectation and symmetry

E[X] =

100∑
i=1

E[1Ai ] = 100 · P(A1).

We have that

P(A1) =

(
3
2

)(
15
2

) =
1

35

since we know that the 1st person is on exactly 3 committees, and there are
(
15
2

)
ways to pick two

committees and there are
(
3
2

)
ways to pick two committees with person 1 in common. Therefore,

E[X] =
100

35
≈ 2.86.

To apply the probabilistic method, suppose for the sake of contradiction that there are no commit-
tees with that have at least 3 people in common, then we must have X ≤ 2 since any two randomly
chosen committees can have at most 2 people in common. This implies that E[X] must be smaller
than 2, which contradicts the fact that E[X] > 2, so there are must be at least 2 committees with at
least 3 people in common.

Problem 2.2. There are 10 points on a sheet of letter paper and you have 10 coins with radius 1.
Show that you can position the coins to cover the points without stacking any coins.

Page 5 of 7



September 27, 2025 MATT521 – Week 5 Justin Ko

Solution 2.2. We will show that there will be a random arrangement of non-overlapping coins that
can cover 10 points. To construct the arrangement, consider a honey comb tiling of the sheet of paper
with hexagons. The size of the hexagons will be chosen so that a circle of radius 1 can be inscribed
inside it.

1

We now randomly lay a honeycomb tiling on the sheet of paper and put a coin on every tile that
contains at least one point (it is possible that we don’t need to use all 10 coins to cover the points)

Let Ai be the event that a random assignment of the coins according to the honeycomb covers the
ith point. We have by the union bound

P(∩10
i=1Ai) = 1− P(∪10

i=1A
c
i ) ≥ 1− 10P(Ac

1)

The area of the circle is π and the area of the hexagon is 6√
3
, so the probability that point does not

lie in the inscribed circle is
1− π

6√
3

≈ 0.0931.

Therefore,
P(∩10

i=1Ai) ≥ 1− 10 · 0.0931 = 0.068 > 0.

By the probabilistic method, this implies that there exists an arrangement that covers the 10 points.

Remark 4. To compute the area of the hexagon that inscribes the circle, recall that the area of the
equilateral triangle with height 1 has area 1√

3
since the side length s satisfy

12 +
s2

4
= s2 =⇒ s =

2√
3
.

Six of these triangles makes up a hexagon so the area is 6√
3
.
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2.2 Proofs of Key Results

Problem 2.3. Let A = {a randomly selected object satisfies property ⋆}. If P(A > 0) then there
exists an object that satisfies property ⋆.

Solution 2.3. We prove the contrapositive. That is, we assume that there does not exist an object
that satisfies property ⋆, then we must have P(A = 0).

Problem 2.4. Suppose that E[X] ≥ c. Then there exists an ω ∈ Ω such that X(ω) ≥ c.

Solution 2.4. We prove the contrapositive. Suppose that there does not exist an ω ∈ Ω such that
X(ω) < c, in other words X ≤ c so E[X] < c.
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