September 15, 2025 STAT521 — Week 4 Justin Ko

1 Expected Value and Variance

In this section, we will introduce two numbers which will encode the typical value and the spread of
the random variable.

1.1 Expected Value

The first key theoretical value is the “typical value” of the random variable, also known as the expected
value, first moment, or mean. It is given by the weighted average of the random variable against its
density.

Definition 1 (Expected Value). Suppose X is a discrete random variable with PMF px(x). The
expected value of X, denoted by E[X], is the number

E[X] = Z xpx(x) = Z zP(X = z),

reX(Q) 2€X(Q)
provided the sum converges absolutely (that is, if >_, ¢ v q) [z] px (z) < 00).

The expected value can be interpreted as the integral of the random variable with respect to its
probability distribution.

Remark 1. The average of many realizations of X converges to E[X]. This is called the law of large
numbers. The expected value is also the number that minimizes the squared error (see Problem 1.13).

1.1.1 Properties

1. Law of the Unconscious Statistician: If g : R — R, and X is a random variable with PMF px,
then g(X) is a random variable taking values g(X(£2)) and

Elg(X)]= Y gl@)px(z)

zeX ()

2. Linearity: Suppose the random variable X has E[X] = u. Then for any constants a,b € R,

ElaX +b]=ap+b=aE[X]+b

3. Linearity II:: Suppose that X and Y are random variables. Then

E[X + Y] = E[X] + E[Y].

4. Jensen’s Inequality: If g is convex then

E[g(X)] > g(E[X]).
5. Equivalent Formula: If X > 0, then

(o)
E[X] = / P(X > t) dt.
0
Remark 2. In general E[g(X)] # g[E(X)]. However, if g is a linear function or X is a constant
random variable then equality holds.

Remark 3. In general E[XY] # E[X]|E[Y]. However, if X and Y are independent then equality holds.
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1.2 Variance
The second key theoretical value is the “deviations” of the random variable from its expected value.
Definition 2 (Variance). The variance of X, denoted by Var[X], is the non-negative number
Var[X] =E [(X — E[X])?].
The variance is in the squared units, so the standard deviation defined by
SD(X) = /Var[X]

measures the deviation in the original units.

1.2.1 Properties

1. Equivalent formula I:
Var(X) = E[X?] — (E[X])>.

2. Equivalent formula II:
Var(X) = E[X(X - 1)] + E[X] — (E[X])?

3. Variance of Linear Functions: For any constants a,b € R,

Var(aX +b) = a® Var(X)

4. Variance of Linear Functions II: If X and Y are independent then

Var(X +Y) = Var(X) + Var(Y)

5. Zero Variance: Suppose a random variable X has E[X] = p and Var(X) = 0. This means, X
does not “vary” from its mean at all, and is constant with probability 1

Theorem 1
Var(X) = 0 if and only if P(X = E[X]) = 1.

1.3 Expected Value and Variance of Common Distributions

Distribution PMF / PDF Mean Variance
DUnif(a, b) ﬁ7 x={a,a+1,...,b} QT'H’ %
Bern(p) p*(1—p)t==, z€{0,1} D p(1 —p)
Bin(n, p) (;’)pz(l -p)"* x=0,1,...,n np np(l —p)
Geo(p) (1-p)™'p, z=12,... L E
NegBin(k, p) (=), 2 =0,1,2,.. k() k(-p)
] )\ace—A
Poi(\) —, ©=0,1,2,... A A
BIAS—
Hyp(N,r,n) %, max{0,n — (N —r)} <2 < min{r,n} T nt (1-%) (%:'{
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1.4 Example Problems
Problem 1.1. Consider a random variable X with PMF
px(1) =03 px(2) =025 px(3)=0.2 px(4) =015 px(5)=0.1

What is E[X]?

Solution 1.1. By definition,

E[X]=1-03+2-025+3-02+4-0.15+5-0.1=25

Problem 1.2. A lottery is conducted in which 7 numbers are drawn without replacement between
the numbers 1 and 49. A player wins the lottery if the numbers selected on their ticket match all 7 of
the drawn numbers. A ticket to play the lottery costs 10 cents, and the jackpot is valued at $1,000,000.
Is the expected return* of this bet positive, i.e., would you play this bet?

Note: The return of a bet is the winnings minus costs.

Solution 1.2. Let R denote the return of the game. The random variable R can take two values,
depending on if we win or not:

—0.10 with probability 1 — ﬁ

7

999,999.90  with probability ﬁ
7

The expected value of R, or the expected return, is then

1 1
E[R] = —0.10 - (1 - 49> +999,999.90 - g5 ~ —0.0884

(%) (7)

Problem 1.3. Suppose X is a random variable satisfying a < X(w) < b for all w € Q. Show that
a <E[X] <b.

Solution 1.3. Since a < X (w) < b, we have X(Q) C [a,b]. There

EX]= > apx(x)< > bpx(x)=0b Y px(z)=b

2EX(Q) TEX(Q) 2EX(Q)
and

EX]= > apx(@)> Y apx(@)=a Y px(@) =a

TEX(Q) zEX(Q) zEX(Q)

Problem 1.4. Let X be the outcome of one die roll with a fair six-sided die.
1. What is the expected value of X7

2. What is the expected value of the square of X7

Solution 1.4.
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1. Since X ~ U]L, 6] we have

_1+6
=5 =
Alternative Solution: We can compute this directly

E[X] 3.5.

2. The square does not follow any known density, so we compute it directly,

1 91
E[X?) = (17 +2° 4+ +6%) =

Problem 1.5. Suppose the discrete random variable X has PMF
px(=1) =015, px(0)=2¢, px(1) =05, px(2)=0.05 px3) =c
where ¢ is a constant making f a valid PMF.
1. What is E[X]?
2. What is E[eX]?

Solution 1.5. Since the probabilities sum to 1, we must have

3
1= px(i)=3c+0.7 = c=0.1

r=—1

1. By definition,

E[X]=(=1)-0.154+0-02+1-0.54+2-0.05+3-0.1 = 0.75

2. By the law of the unconscious statistician

EleX]=e1-0.15+€"-02+¢e'-0.5+¢?-0.05+¢€*-0.1 ~ 3.992

Problem 1.6. Suppose two fair six sided die are independently rolled 24 times, and let X denote the
number of times the sum of die rolls is 7. What is E[X]?

Solution 1.6. The ways of rolling a 7 out of two die rolls is {(1,6), (2, 5), (3,4), (4,3), (5,2),(6,1)} so
the probability is 6% = %. This is the probability of a success and there are 24 trials, X ~ Bin(24, %)
SO

24

E[X] = -

4.

Problem 1.7. You are invited to a quiz show! There are two categories of questions, History and
Geography. The host lets you pick which category to pick first. If you get your first question right, you
are then given the opportunity to answer the second question, otherwise the game is over. Because
history is so much harder, the history question is worth $200 while the Geography question is only
worth $100. Checking back on your high school transcript you estimate that you get a geography
question right with probability 70% while you get a history question right with probability 55%. You
can assume that knowing the answers to the two questions is independent.
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1. Which category should you pick first in order to maximize your expected winnings?

2. Suppose you are indecisive and flip a fair coin before picking the category you answer first. If the
coin shows heads, you pick the history question first, otherwise the geography question. Compute
the the expected value of your winnings.

Solution 1.7.

1. Let W), and W, be the winnings if we pick history first and geography first respectively. If we
first pick history, the expected winnings are

E[W}] = (200 4 100) - 0.55 - 0.7 + (200 + 0) - 0.55 - 0.3 = 148.5
If we first pick geography, the expected winnings are
E[W,] = (100 4 200) - 0.7 - 0.55 + (100 + 0) - 0.7 - 0.45 = 147

Since E[W3] > E[W,], we should pick history first to maximize the expected winnings.

2. Let W be the winnings if a coin decides our decision. Consider the random variables

1 weflipa H 1 weflipaT
]]-H =S . and ]]-T S . .
0 weflipaT 0 weflipaH

We have W = 1xgW), 4+ 17Wy, so the linearity of expectation and independence implies that implies
that
E[W] = E[]lHWh + ]lTWg] = E[]lHWh] + E[HTWQ} = E[]lH] ]E[Wh] + E[]IT] ]E[Wg]

It is easy to see that E[1(H)] = E[l7] = 3 so the results in part (1) implies

EW] =E[1pWs] + E[1lr W] = %(E[Wh] +E[W,]) = 147.75.

Remark 4. We used the fact that if X and Y are independent then E[XY] = E[X]E[Y], but we
will go more into that in later chapters. In this example, it is not hard to compute the expectation
explicitly without using this fact. Since 15W) = 0 if we flip a tails, independence implies that

E1agWil= >  O0PWy=z,T)+ > aP(W,=xzH)

zEW3 () zeWnL(Q)
1 1
= > xP(W,=2)PH) = 3 > aP(W,=u1)= 5 EWa].
zEWL(Q) €W ()

The exact same argument implies that E[17W),] = 3 E[W,].
Alternate Solution: We can list out all the cases. Let W denote the winnings.

1. Heads, first wrong. We first pick history and get it wrong. We win W = 0 with probability
0.5-0.45 = 0.225

2. Heads, second wrong. We first pick history, get it right, then geography wrong so we win W = 200
with probability 0.5 0.55- 0.3 = 0.0825.

3. Heads, no questions wrong. We win W = 300 with probability 0.5-0.55- 0.7 = 0.1925.
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4. Tails, first wrong. We first pick geography and get it wrong. We win W = 0 with probability
0.5-0.3 =0.15.

5. Tuails, second wrong. We first pick geography, get it right, then history wrong so we win W = 100
with probability 0.5 0.7 - 0.45 = 0.1575.

6. Tails, no questions wrong. We win W = 300 with probability 0.5 - 0.7 - 0.55 = 0.1925.
The PMF of the winnings W is given by
pw (0) = 0.225 + 0.15, pw (100) = 0.1575 , pw (200) = 0.0825, pw (300) = 0.1925 + 0.1925
and we find

E[W] =100-0.1575 4 200 - 0.0825 4 300 - (0.1925 4 0.1925) = 147.75.

Problem 1.8. Suppose that calls to the Canadian Tire Financial call center follow a Poisson process
with rate 30 calls per minute. Let X denote the number of calls to the center after 1 hour. What is
E[X/2 —1]?

Solution 1.8. The rate of 30 calls per minute is equivalent to a rate of 30 - 60 calls per hour, so

X ~ Poi(30 - 60). Therefore,

1 1800
ELf—l}_iEMj—l_ggf—l—8%.

Problem 1.9. Consider a random variable X with PMF px(x) = % for x = 2,4,8,16,... and 0
otherwise.

1. Show that Y px(z) =1.

all x

2. What is E[X]?

Solution 1.9.

1. The range of X is 2" where n > 1. We have by the geometric series that
1 1 1
pOFTNEID DT S MRS Y
all x n>1 n>0 2
2. For the expected value, we have
o0 1 o0
E[X] = 2%px (2™) = 2" — | = 1 =00,
= etz = 3 (7)-2

so the expected value is infinite, and does not exist in the traditional sense.

Problem 1.10. Consider the random variables
e X is ar.v. representing the outcome of one fair 6-sided die roll

e Y is a r.v. representing the number of phone calls over 1 minute at Lenovo call centre, with the
rate of 3.5 calls per minute
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Compute the mean and variance of X and Y.

Solution 1.10. Using the formulas for mean and variance, we have

62 -1
~ 29
12

E[X] = 3.5, Var(X) =
while
E[Y] = 3.5, Var(Y) = 3.5.

This makes intuitive sense because both X and Y have the same mean, but the fact that Y can take
values on N while X can only take values on {1,2,...,6}, so Y should have larger variance even though
both random variables have the same mean.

Problem 1.11. Suppose a fair coin is flipped 1,000 times, and let X denote the number of heads
observed. What is the standard deviation of X?

Solution 1.11. We have X ~ Bin(1000,0.5), so

SD(X) = /Var(X) = 1/1000(0.5)(1 — 0.5) ~ 15.81.

Problem 1.12. Suppose that X has variance Var(X) = 2. Compute the variance of Y, where Y =
—2X +3.

Solution 1.12. By the variance of linear maps,

Var(Y) = Var(—2X + 3) = (—2)? Var(X) = 8.

1.5 Proofs of Key Results

Problem 1.13. For any constant ¢, show that
E[(X - ¢)’] > E[(X - E[X])?].
In particular, the expected value is the constant that minimizes the mean squared error.
Solution 1.13. This proof follows directly from the properties of the expected value. By adding and
subtracting E[X], we see that

E[(X - ¢)’] = E[(X - E[X] + E[X] - ¢)’]
= E[(X -~ E[X])*] + E[(E[X] - ¢)?] + 2E[(X — E[X])(E[X] — )]

Since E[X] — ¢ is not random, we see that the cross terms vanish
E[(X - E[XD(E[X] - ¢)] = (E[X] - ) E[(X — E[X])] = (E[X] — ¢)(E[X] — E[X]) = 0.
Since E[(E[X] — ¢)?] > 0, we conclude that
E[(X — ¢)?] = B[(X — E[X])?] + E[(E[X] — ¢)?] > E[(X — E[X])?

as required.
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Problem 1.14. Prove the law of the unconscious statistician

Solution 1.14. This follows from a change of variables and a rearrangement of a sum. Given a

function g, let
Dy =g ({y}) = {z: g(x) = y}.
If we let Y = g(X) then
fry) =Pg(X)=y)= Y px(x)

€D,y

and Y (Q) = g(X(Q)) since
Y(Q) ={Y(w) :we S} ={9(X(w):we S}

Therefore,

EgX)=E[Y]= Y uh@= D u > px@)= > Y gapx@= Y g@)px@).

yeY (Q) yeY (Q) z€Dy, yeY (Q) z€D, z€X(Q)

Since (Dy)yey (o) forms a partition of X (€2).
Problem 1.15. Prove the linearity property of expectation

Solution 1.15. This follows form the linearity of summation. By the law of the unconscious statis-
tician with g(z) = ax + b, we have

ElaX +b] = Z (ax + b)px(xz) =a Z xpx(z) +b Z px(z) =aE[X]+b
z€X () zeX () zeX ()

since 3, e x (o) Px () = 1.
Problem 1.16. Prove the equivalent formula for the expected value when X is non-negative.

Solution 1.16. If x > 0, we can write it as

m:/ dt:/ 1(t <z)dt
0 0

Using this fact in the definition of the expected value gives us

EX]= > zP(X Z/ 1(t < 2)P(X = z)dt

z€X(Q) TEX(Q)
:/ S Lt < @) P(X =) dt
zeX ()
/ > P(X =ux)dt
ze€X (Q):x>t

:/ P(X > t)dt.
0

The interchange of the sum and integral can always be done if X () is finite. If | X(Q)| is infinite,
then it is also true and it can be justified by the monotone convergence theorem.
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Problem 1.17. Show that

Var(X) = E[X?] — (E[X])? = E[X(X —1)] + E[X] — (E[X])2.

Solution 1.17. To simplify notation, we define E[X] = . Then by the linearity of expectation,
Var(X) = E[(X — )2 = B[X? - 24X + 4] = E[X?] — 20 B[X] + p? = B[X?] - i = E[X?] ~ (B[X])%.
To conclude the second equality, notice that

E[X(X —1)] = E[X? - X] = E[X?] - E[X] = E[X?] =E[X(X —1)] +E[X]
so substituting this into the formula above implies

Var(X) = E[X?] — (E[X])? = E[X (X —1)] + E[X] — (E[X])%.

Problem 1.18. Show that for any constants a and b,

Var(aX + b) = a® Var(X).

Solution 1.18. We can use the definition of the variance. Let Y = aX + b,
Var(aX +b) = Var(Y) = E[(Y — E[Y])?] = E[(aX + b — E[aX + b])?]
ElaX +b] = aE[X] +b =E[(aX — aE[X])?]
= d’E[(X — E[X])?] = a® Var(X).

Remark 5. This makes intuitive sense because shifting a random variable by b does not change the
spread of the random variables. However, scaling the random variable by a will change the spread by
a factor of a? since we are measuring the squared deviations, so the scaling factor is squared.

Problem 1.19. Prove Theorem 1.

Solution 1.19. Let E[X] = p.

( = ) Suppose P(X = u) = 1. In other words, px(x) = 1 and there are no other non-zero val-
ues of the PMF, so by definition of the variance,

Var(X) = E(X — p)?) = E[X?] - E[X]* = ) P(X = p) — (uP(X = p))*> = 0.
( <) Conversely, suppose Var(X) = 0. Then, again by definition of the variance,

0= Var(X) = E((X — 0)*) = 3 (& — )’ P(X = ).

all >0 —px ()20

Suppose for the sake of contradiction that there exists a v # p such that P(X = v) > 0. In this case,
we have
Var(X) > (v — u)?P(X =v) >0

which contradicts the fact that Var(X) = 0. Therefore, we must have P(X = p) = 1.
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Problem 1.20. If X ~ DUnif[a, ] then E[X] = <}t

Solution 1.20. If X ~ DUnif[a, b] then the sum of positive integers implies

o

r=1
_ 1 (bQ—a2+(b+a))_a+b

b—a+1 2 2
Alternative Solution: If X ~ DUnif[0,n| then the sum of positive integers implies

~ z _nn+1l) n
E[X]*;nﬂ’ 2(n+1) 2’

Notice that X ~ DUnif[a,b] ~ a + DUnif[0,b — a]. Therefore, if we let Y ~ DUnif[0,b — a], then
X =a+Y so linearity implies that

b— b
E[X] =Ela+Y] =a+EY]=a+ " = "; .

Problem 1.21. If X ~ Hyp(N,r,n), then E[X] = rf.

Solution 1.21. This proof uses a trick called the linearity of expectation. To simplify notation,
suppose that we have r blue balls and N — r red balls, then X ~ Hyp(N,r,n) denotes the number of
blue balls we drew from a sample of n balls without replacement.

We label the blue balls 1,...,r and let A; denote the event that the blue ball labeled i was drawn.
Consider the random variable

~J 1 if we drew the blue ball labeled 4
Ai T 0 if we did not draw the blue ball labeled 3.

If X ~ Hyp(N,r,n) then X =3, 1(A;) which is the total number of blue balls that we drew. We
have by the linearity of expectation that

E[X]=E [z_; 114 - ZE[M].

Next, for any 4, we have
E[ls,]=1-P(A1)+0- (1 —P(A41)) = P(we drew the blue ball labeled 7).

By symmetry (we are not more likely to draw a particular ball over another one), for all ¢ < r

P(A;) = P(A)) = _06GH) _n
i) = 1) = P(we drew the blue ball labeled 1) = (N) =N

n

SO

E[X] = ZE[M] =rP(4A;) = —.

Problem 1.22. If X ~ Bin(n,p) then E[X]| = np.
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Solution 1.22. If X ~ Bin(n,p) then px(z) = (7)p*(1 — p)" =" so

=0

- n! . -
:;x. TR

n n-(n—1)! ) o
;((n_l)_((x—l))ﬂ(x_l)'p p 1(1—1)) 1—(z—1)
- > — Y (n—1)—y

g ;«n_l)—y)'y' p’(1—p)

n—1

=n n—1 v ety

P;( Y ) p’(1—p)

=1sum of PMF of Bin(n — 1, p)
= np.
Alternative Solution: If X ~ Bern(p) then

EX]=1-p+0-(1—p) =p.

add and subtract 1

re-index sum

Now suppose that X ~ Bin(n,p). Since X = X;+-- -+ X,, where X; are independent and X ~ Bern(p)
(the number of successes in n trials is equal to the sum of n successful trials), linearity implies that

E[X]=E[X1 +...X,] =nE[X1] = np.

Problem 1.23. If X ~ NegBin(k,p), show that E[X] = w

Solution 1.23. We first consider the geometric random variable. We will use many times throughout

this derivation the identity
o0
k - 1
Z T = 1—g¢q
k=0

for |q| < 1. If X ~ Geo(p) ~ NegBin(1,p) then px(x) = p(1 — p)® so

E[X] = pr(l —p)¥ = pz Z(l —-p)* 0-e’(1—p)° =0, =
=0 rz=1k=1 k=1
oo o0
:pz (1-p)* 1<k<z<oo
k=1z=k

Il
—
-
|
=
S—
[
—
~
|
=
S—
ol
(]
|
-]
9
Il
o
|
=
S
(7]
|
=
~—~—
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Now suppose that X ~ NegBin(k,p). For 1 < i < k, let X; denote the number of fails between the
(i — 1)st success and the ith success. Since X; counts the number of fails until the next success, we
have X; ~ Geo(p) for all i. By definition, X = X; + --- + X}, since the total fails until k successes is
equal to the sum of the number fails between successes, linearity implies that

E[X] = E[X1 +...Xx] = kE[X}] = ki=p),

Problem 1.24. If X ~ Poi(p), show that E[X] = u.

Solution 1.24. If X ~ Pois(u) then px(z) = e~ ““ SO
Zz e “u
:Zx.ew% ()-r“% =0
_“Z - 5—1

oo
Y
=u E et = re-index sum
y=0 v

———
=1 sum of PMF of Poi(u)

= /J[“
. _ (b—a+1)?—1
Problem 1.25. If X ~ DUnif[a, b] then Var(X) = 53—

Solution 1.25. If X ~ DUnif[0, n] then the sum of positive integers implies

E[Xz]zz z _nh+l) _n E[XQ]:Z 2 nn+1)2n+1)  n(@2n+1)

n+1 2n+1) 2’ n+1 6(n+1) N 6

=0 =0

SO
2n+1) n? (n+1)?2-1
X)=FE[X? —EXQZL——:i.
Var(X) = E[X? - E[X]? = “ ) -
Notice that X ~ DUnif[a,b] ~ a + DUnif[0,b — a]. Therefore, if we let Y ~ DUnif[0,b — a], then
X = a+Y so the variance of a linear function implies that

(b—a+1)2-1

Var(X) = Var(a+Y) = Var(Y) = B

Problem 1.26. If X ~ Hyp(N,,n), then Var(X) = ng (1 - %) (¥=1) -

Solution 1.26. This proof uses a trick called the linearity of expectation. To simplify notation,
suppose that we have r blue balls and N — r red balls, then X ~ Hyp(N,r,n) denotes the number of
blue balls we drew from a sample of n balls without replacement. We first compute E[X (X — 1)]. It

suffices to compute X\1 XX 1)
E [( 2 >} =E [#}
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which denotes the expected value of the number of pairs of blue balls we drew.
We label the successful balls 1,...,r and let A;; denote the event that the pair of balls labeled %
and j was drawn where. Consider the random variable

~J 1 if we drew the pair of blue balls 7 and j
A5~ 10 if we did not draw the pair of blue balls ¢ and j.

If X ~ Hyp(N,r,n) then ()2() = > 1<icj<r La,; Which is the total number of pairs of blue balls that
we drew. We have by the linearity of expectation that

X
o] 2 ]
1<i<j<r 1<i<j<r
Next, for any i, j, we have
E[la,] =1P(Ay) +0- (1 —P(Aj;)) = P(Ay).

By symmetry (we are not more likely to draw a particular ball over another one), forall 1 <i < j <r

()(22) _ n(n-1)
P(A4;;) = P(A12) = P( we drew the pair of blue balls i and j ) = (131)7 = NV 1)

n

SO

e[(3)] - P CRE D by = D LD

Multiplying by two implies that

E[X (X —1)] :2]E[<X)} e {X(X—l)} _ r(r—l)n(n—l).

N(N —1)
Since we know that E[X] = r& we have
2,2

V) = B ) 11 ) = LS 2 (1) (522

Remark 6. We can set p = §; which denotes the probability of a successful draw. If X ~ Hyp(N,r,n)
and Y ~ Bin(n,p) then

E(X]=np  Var(X) = np(l - p) (x = Tf) .

and
E[Y] =np Var(Y) = np(1 — p).

The hypergeometric and binomial random variable have the same mean, and they have the same
variance except for a factor J]\\',:’f < 1. The variance of the hypergeometric is slightly less because
sampling without replacement reduces the “spread” since our sample space shrinks with each draw.

When n = 1 then the factor £=2 = 1, so the variance of a hypergeometric and binomial random

N—-1 —
variables are the same, since sampling one object with or without replacement is the same. When
N — oo then the factor %:TIL = 1, which is again consistent because sampling with or without

replacement from a large population is essentially the same.
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Problem 1.27. If X ~ Bin(n,p) then Var(X) = np(1 — p).

Solution 1.27. If X ~ Bin(n, p) then px(z) = (7)p®(1 — p)"~*. We use the formula
Var(X) = E(X(X — 1)) + E(X) — (E(X))?

and note we already know E(X) = np. By definition

n |

z=0 o

L (n—2)! s 2 (22

=n(n—1)p ; (n727(x72))!(:€72)1p (1-p) (z=2)
n—2
= n(n — 2 (n — 2)' Y(1 _ n\"—2—y
= n(n—1)p 2, TR (1-p)
=1 sum of PMF of (n — 2, p)

=n(n— 1)p2.

Then
Var(X) = E[X(X - 1)] + E[X] - (E[X])* = n(n — 1)p” + np — (np)* = np(1 - p).

Alternative Solution: If X ~ Bern(p) then by definition
Var(X) = E[(X —p)?| = (1 - p)’p + (~p)*(1 = p) = p(1 — p).

Now suppose that X ~ Bin(n, p). Since X = X;+- -+ X,, where X, are independent and X ~ Bern(p)
(the number of successes in n trials is equal to the sum of n successful trials), linearity implies that

Var(X) = Var(X; + ... X,) =nVar(Xy) = np(1 — p).

Problem 1.28. If X ~ NegBin(k,p), show that Var(X) = 2020,

Solution 1.28. We first consider the geometric random variable. We will use many times throughout
this derivation the identity
o
k1L
Z T = 1—¢q
k=0

for |¢| < 1. From this identity, we can recover higher order versions of this by differentiating the power
series term by term with respect to g, that is

d>~, d 1 o~ k1 1
e DL ST
dq &= dgl—gq prt (1-q)
and ,
P, d o1 = o 2
— = k(k—1 =
dqQ,;)q iP1i—q kz:; (k= 1)g (1-q)?

We will use these identities to give a different derivative of the first and second moments of a geometric
random variable.
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If X ~ Geo(p) ~ NegBin(1,p) then px(x) = p(1 — p)* so the first derivative identity implies that

- - - . 1- 1-—
= ;mp(l —p) = ;wp(l —p)*=p( —p)xzﬂm(l LT p((l p;))g _ ’ 2

Likewise, the second derivative identity implies that

— o) Ooxxf wa  20(1—p)%  2(1—p)?
BXOE =1 = 3 sle = Op =2 =2 =2)* 3ol =D =) = T2 =
Therefore,
Var(X) = E[X(X — 1)] + E[X] — (E[X])? = 2(1p_2p)2 L a ;p) _ & ;27’)2 - (1p_2p).

Now suppose that X ~ NegBin(k, p). For 1 <i <k, let X; denote the number of fails between the
(i — 1)st success and the ith success. Since X; counts the number of fails until the next success, we
have X; ~ Geo(p) for all ¢ and the X, are independent. By definition, X = X; + - -+ + X} since the
total fails until k& successes is equal to the sum of the number fails between successes, linearity implies

that
k(1 —p)

Var(X) = Var(X; + ... Xy) = kVar(X;) = 5
p

Problem 1.29. If X ~ Poi(u), show that Var(X) = p.

Solution 1.29. If X ~ Pois(u) then px(z) =e ““ . We use the formula
Var(X) = E[X (X —1)] + E[X] — (E[X])*

and note we already know E(X) = p. By definition

EX(X—1)] =3 a(z—1)- e_”/;—g;
x=0

Yy
_ 2 —p K ot .
= e M— re-index sum

Then
Var(X) = E(X (X — 1)) + E(X) — (E(X))? = 1 + i — (u)* = .
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