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1 Random Variables

We define the concept of a random variable which will allow us to describe probabilities without having
to go through the trouble specifying the sample spaces, which is often tedious to work with in practice.

Definition 1 (Random Variable). A random variable is a (measurable) function that maps the sample
space Ω to the set of real numbers R. That is, X is a random variable if

X : Ω → R.

Definition 2 (Range). The values in R that a random variable takes is called the range of the random
variable, and is denoted by

X(Ω) = {X(ω) ∈ R : ω ∈ Ω}.

Definition 3 (Pre-Image). The values in the sample space that are mapped to a set A by the random
variable X is called the pre-image of A under X, and is denoted by

X−1(A) = {ω ∈ Ω : X(ω) ∈ A}.

Associated with a random variable is a natural probability measure on R, which encodes the
liklihood of the random variables taking any particular set of numbers.

Definition 4 (Distribution). The distribution PX is a probability measure on R given by the push-
forward of P by X. That is, for any (measurable) set A ⊂ R,

PX(A) = P(X−1(A)).

The set of all events we can assign probabilities is denoted by B and is called the Borel σ-algebra.

Remark 1. The set B contains almost every set that you can imagine. In more advanced probability
courses, we require that in the definition of a random variable that X is a measurable function. This
ensures that its distribution of X is a well–defined on B.

If (Ω,F ,P) is the underlying probability space then (X(Ω),B,PX) defines a probability space with
sample space given by the range of X, events given by (measurable) subsets of R, and probability
measure given by the distribution of X. This is very convenient notion because we no longer have to
consider probabilities on sets, but rather probabilities on the real line.

1.1 Cumulative Distribution Function (CDF)

We are often interested in probabilities of the form P(X ≤ x) or P(X > x). We will see that these
probabilities encodes the same information as a PMF.

Definition 5. The cumulative distribution function (CDF) of a random variable X is

FX(x) = P(X ≤ x) := P({ω ∈ Ω : X(ω) ≤ x}), x ∈ R.

The CDF is not a probability measure, but it encodes all the information of a probability measure.

Theorem 1 (Characterization of a CDF)

The cdf F satisfies

(i) Right-continuous: i.e., FX(x) = FX(x+) = limt↓x FX(t) for all x ∈ R

(ii) Non-decreasing: FX(x) ≤ FX(y) for x < y

(iii) Boundary Conditions: satisfies limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Conversely, any function F with these properties (i), (ii) and (iii) is the cdf of some random variable.
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As a consequence, if two random variables have the same CDF, they encode the same probability
measure on X(Ω).

Definition 6 (Equal in Distribution). Two random variables X and Y are equal in distribution if
FX(t) = FY (t) for all t ∈ R. We denote this by

X
d
= Y.

Remark 2. Random variables X and Y being equal in distribution does not mean X = Y (see
Problem 4.1). It just means that the probability of X and Y taking any particular value is the same.
In fact, X and Y don’t even have to be functions defined on the same sample space.

1.2 Independence

The notion of independence for sets translates in the expected way for random variables.

Definition 7 (Independence). Random variablesX1, X2, . . . , Xn are independent if for all x1, x2, . . . , xn ∈
R,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = P(X1 ≤ x1)P(X2 ≤ x2) · · ·P(Xn ≤ xn).

Remark 3. Independence is quite a strong condition, since it must hold for all x1, x2, . . . , xn ∈ R.
This is the analogue of mutual independence of all the events {Xi ≤ xi} for xi ∈ R.

Independence is naturally inherited by functions of independent random variables, since applying a
non-random function to a random variable does not give more information about the other variables.

Theorem 2 (Independence of Functions of Random Variables)

Let f, g : R → R be non-random functions on R. If X and Y are independent random variables,
then the random variables f(X) and g(Y ) are also independent.

In statistics, we will often sample several independent realizations from the same distribution.

Definition 8 (i.i.d.). A sequence of random variables X1, . . . , Xn are called independent and identi-
cally distributed (i.i.d.) if they are independent and have the same distribution.

Remark 4. Although we often use independent and identically distributed together throughout the
course, the notions of independence and identically distributed are separate concepts.

We will see later that i.i.d. is the default assumption for the basic statement of many results about
the limits of several random variables.

1.3 Discrete Random Variables

We now introduce the discrete random variables, which will be used to illustrate several fundamental
concepts in probability before generalizing to other types of random variables.

Definition 9 (Discrete Random Variable). We say that a random variable is discrete if its range X(Ω)
is a discrete subset of R (i.e., a finite or a countably infinite set).

Remark 5. A random variable may be discrete even though the underlying sample space might not
be (see Problem 4.2).
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1.3.1 Probability Mass Function (PMF)

A discrete random variable can only take countably many points, so its distribution is completely
encoded by the probability of each individual value.

Definition 10. The probability (mass) function of a discrete random variable X is the function

pX(x) = P(X = x) := P({ω ∈ Ω : X(ω) = x}) = P(X−1(x)).

The value of pX(x) is zero when x is outside the range of the random variable X, so we usually only
specify pX on X(Ω). The values of x such that pX(x) is nonzero is called the support of X.

If (Ω,F ,P) is our original probability model on the underlying sample space, the PMF induces a
probability on the range X(Ω) through the (push-forward) measure pX(x) = P(X−1(x)). It follows
that the PMF defines a (discrete) probability distribution defined on X(Ω) ⊆ R instead of Ω:

1.
0 ≤ pX(x) ≤ 1 for all x

2. ∑
x∈X(Ω)

pX(x) = 1.

An important implication of this fact is that we no longer have to specify what the underlying sample
space Ω with probability measure P to compute probabilities. If X encodes the quantities we need to
assign probabilities to, then we can work directly with the sample space X(Ω) and its distribution pX .
The upside from this point of view is that studying probability has now been connected to studying
functions, and we have many mathematical tools to do this, e.g. linear algebra, calculus, etc.

1.3.2 Connection Between the PMF and CDF

The PMF and CDF encode the same information for discrete random variables.

1. If X is discrete with PMF pX , then

FX(x) =
∑
y≤x

pX(y).

Notice that FX(x) is constant between consecutive points in the support of pX .

2. If X is discrete with CDF FX , then

pX(x) = FX(x)− FX(x−) =: FX(x)− lim
t↑x

FX(t).

Notice that pX(x) is zero except for points of discontinuity of FX .

Example 1. The PMF and CDF of a random variable is visualized below:
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The discontinuous jumps of the CDF are exactly the same size as the non-zero values of the PMF.
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1.4 Example Problems

1.4.1 PMF and CDF Problems

Problem 1.1. Consider again the following game: You roll a fair die and win $2 if the die shows a
number between 1 and 4 (inclusive), and otherwise you loose $5. If X denotes the gain, what is pX .

Solution 1.1. The underlying sample space is [6], and the underlying probability is uniform on this
sample space. Clearly X takes values in {−5, 2}. We have

pX(2) = P(X = 2) = P(X−1(2)) = P(ω ∈ {1, 2, 3, 4}) = 2

3

pX(−5) = P(X = −5) = P(X−1(−5)) = P(ω ∈ {5, 6}) = 1

3

and pX(x) = 0 otherwise.

Problem 1.2. Suppose you roll two fair six-sided dice and denote by X the sum. Which x maximizes
the PMF pX(x)?

Solution 1.2. We tabulate the PMF pX of X, which represents the sum of the two dice:

x 2 3 4 5 6 7 8 9 10 11 12
pX(x) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

We see that x = 7 maximizes the PMF pX .

Problem 1.3. Consider rolling two fair six sided die, and let the random variable X be the minimum
of the die rolls. What is pX(2)?

Solution 1.3. We want to compute pX(2) = P(X = 2). This happens when we roll

(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 2), (4, 2), (5, 2), (6, 2)

There are 9 possibilities, so pX(2) = 9
36 = 1

4 .

Problem 1.4. Find the value k which makes the function f given by

f(0) = 0.1, f(1) = k, f(2) = 3k, f(3) = 0.3

and 0 elsewhere a valid probability function.

Solution 1.4. A PMF function has to be non-negative and sum to 1. We find k such that

f(0) + f(1) + f(2) + f(3) = 1 =⇒ 4k + 0.4 = 1 =⇒ k = 0.15.

Furthermore, one can check that this choice of k ensures that all f(i) ∈ [0, 1].

Problem 1.5. Suppose students A,B and C each independently answer a question on a test. The
probability of getting the correct answer is 0.9 for A, 0.7 for B and 0.4 for C. Let X denote the number
of people who get the answer correct.
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1. Compute the PMF of X.

2. Draw the CDF of X.

Solution 1.5. Denote by A,B,C the events that students A,B,C get the answer correct, then P(A) =
0.9, P(B) = 0.7 and P(C) = 0.4 and we also know P(Ac) = 0.1, P(Bc) = 0.3 and P(Cc) = 0.6.

We find can explicitly compute all cases

pX(0) = P(X = 0) = P(Ac ∩Bc ∩ Cc)
indep.
= P(Ac)P(Bc)P(Cc) =

18

1000

pX(3) = P(X = 3) = P(A ∩B ∩ C)
indep.
= P(A)P(B)P(C) =

252

1000

pX(1) = P(X = 1) = P(A ∩Bc ∩ Cc) + P(Ac ∩B ∩ Cc) + P(Ac ∩Bc ∩ C)

=
9 · 3 · 6
1000

+
7 · 1 · 6
1000

+
4 · 1 · 3
1000

=
216

1000

and, since the PMF sums to 1,

pX(2) = 1− pX(0)− pX(1)− pX(3) =
514

1000
.

The CDF is thus

FX(x) = P(X ≤ x) =



0, if x < 0

pX(0), if 0 ≤ x < 1

pX(0) + pX(1), if 1 ≤ x < 2

pX(0) + pX(1) + pX(2), if 2 ≤ x < 3

pX(0) + pX(1) + pX(2) + pX(3), if x ≥ 3

=



0, if x < 0
18

1000 , if 0 ≤ x < 1
234
1000 , if 1 ≤ x < 2
748
1000 , if 2 ≤ x < 3

1, if 3 ≤ x

The plot of the CDF is below:
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Remark 6. The end points of the intervals in the CDF are the same as the non-zero values of the
PMF. Furthermore, the ≤ inequality is always on the left of the x and the < inequality is always to
the right of the x. This implies the CDF is right continuous. Furthermore, the value of the CDF on
each interval is equal to the value of the CDF at the left endpoint (which is true even for the first
interval since FX(−∞) = 0).
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Problem 1.6. Consider flipping a fair coin. Let X = 1 if the coin is heads, and X = 3 if the coin is
tails. Let Y = X2 +X. What is the probability function of X?

Solution 1.6. The underlying sample space is Ω = {H,T}. Y takes values in {3, 12}, so fY is
supported on {3, 12}. Notice that Y −1(12) = X−1(3) = {T} and Y −1(3) = X−1(1) = {H}

fY (y) = P(Y = y) =

{
1
2 if y = 3
1
2 if y = 12

Problem 1.7. Suppose that a bowl contains 10 balls, each uniquely numbered 0 through 9. Two
balls are drawn with replacement and let X1 be the number of the first ball and X2 be the number of
the second ball. Find the PMF of X = X1 + 10X2.

Solution 1.7. We have X1 and X2 are independent and X1 ∼ X2. X1 is uniformly distributed over
the set Ω = {0, 1, . . . 9} and so is X2. We have

P(X = 0) = P(X1 = 0)P(X2 = 0) = 0.12 = 0.01

P(X = 1) = P(X1 = 1)P(X2 = 0) = 0.12 = 0.01

...

P(X = 98) = P(X1 = 8)P(X2 = 9) = 0.12 = 0.01

P(X = 99) = P(X1 = 9)P(X2 = 9) = 0.12 = 0.01

We have that X is uniformly distributed on the set of {0, 1, . . . , 99} .

Problem 1.8. You have n identical looking keys on a chain, and one opens your office door. Suppose
you try the keys in random order. Let X denote the number of keys you try until the door opens.
Find the PMF of X.

Solution 1.8. Since we are trying keys randomly without replacement, the location of the correct
key is uniform over the set {1, . . . , n} by symmetry. We can model this with a uniform distribution,
so X ∼ U[1, n]. Therefore,

pX(x) =
1

n

for x ∈ {, 1, . . . , n}.

Alternative Solution: By our assumptions, the sample space is the permutations of the set [n],
which denotes the order of keys we try. Without loss of generality, we may assume that the key la-
beled 1 is the right key. To find pX(x) = P(X = x), we want to count all the possible events A such
that 1 appears in the xth position. There are (n−1)! ways that this can happen, since there are (n−1)
positions left to assign without replacement after fixing the correct key in the xth position. Since the
probability is uniform on Ω,

pX(x) =
(n− 1)!

n!
=

1

n
.
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2 Important Discrete Distributions

We now introduce several named discrete distributions. We use the symbol ∼ to mean distributed as.

2.1 Summary of Named Discrete Distributions

2.1.1 (Discrete) Uniform Distribution: U[a, b]

The (discrete) uniform distribution models variables with equally likely outcomes on an interval.

Definition 11. Suppose the range of the random variable X is {a, a + 1, . . . , b}, where a, b ∈ Z,
and suppose all values are equally likely. Then we say that X has a discrete uniform distribution on
{a, a+ 1, . . . , b}, and is denoted by

X ∼ U[a, b].

� PMF:

pX(x) =
1

b− a+ 1
, for x ∈ {a, a+ 1, . . . , b}.

� CDF:

FX(x) =


0, if x < a
⌊x⌋−a+1
b−a+1 , if x ∈ {a, a+ 1, . . . , b},

1, if x ≥ b,

where ⌊x⌋ = max{z ∈ Z : z ≤ x} is the rounding-down function (“floor”).

Example 2. The following experiments can be modeled by a uniform distribution:

Experiment X Distribution
Roll a 6 sided die # showing on die U [1, 6]
Draw a number between 1 and 50 # Drawn U [1, 50]
Shuffle a deck of cards position of A♠ U [1, 52]

2.1.2 Hypergeometric Distribution: Hyp(N, r, n)

The hypergeometric distribution counts the number of successes in a sample without replacement.

Definition 12. Consider a population that consists of N objects that can be divided into a group of
r indistinguishable “successes” and a group of N − r indistinguishable “failures”. If X is the number
of successes in a random subset of size n drawn from the population without replacement, then we
say X follows a hypergeometric distribution with parameters (N, r, n), and is denoted by

X ∼ Hyp(N, r, n).

� PMF:

pX(x) =

(
r
x

)(
N−r
n−x

)(
N
n

) for max{0, n− (N − r)} ≤ x ≤ min{r, n}

� CDF: There is no closed form in terms of elementary functions.

Example 3. The following experiments can be modeled by a hypergeometric distribution

Experiment X Distribution
Drawing 5 cards from a deck of cards # of Ace’s Hyp(52, 4, 5)
Lotto where 7 numbers are drawn from 50 # Matches Hyp(50, 7, 7)
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2.1.3 Bernoulli Distribution: Bern(p)

The Bernoulli distribution models experiments with two possible outcomes.

Definition 13. Suppose an experiment (called a Bernoulli trial) has a probability of success p. If
X denotes the number of successes in a single Bernoilli trial, then we say X follows the Bernoulli
distribution, and is denoted by

X ∼ Bern(p).

� PMF:
pX(0) = 1− p, pX(1) = p

� CDF:

FX(x) =


0, if x < 0,

1− p, if 0 ≤ x < 1,

1, if x ≥ 1

Example 4. The following experiments can be modeled by a Bernoulli distribution

Experiment X Distribution
Roll a 6 sided die # of 1’s Bern(16 )

Lotto where 7 numbers are drawn from 50 # Jackpots Bern(
(
50
7

)−1
)

A Bernoulli random variable can be encoded by the occurrence of an event A.

Definition 14 (Indicator Random Variable). Let A be an event. The indicator random variable is
given by

1A(ω) =

{
1 ω ∈ A

0 ω /∈ A.

Remark 7. Notice that 1A ∼ Bern(P(A)).

2.1.4 Binomial Distribution: Bin(n, p)

The binomial distribution counts how many trials are successful after multiple independent experi-
ments. Equivalently, it also models the number of successes in samples with replacement.

Definition 15. Suppose a Bernoulli trial has a probability of success p. If X is the number of successes
in n independent Bernoilli trials, then we say X follows the Binomial distribution, and is denoted by

X ∼ Bin(n, p).

� PMF:

pX(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n

� CDF: There is no closed form in terms of elementary functions.

Example 5. The following experiments can be modeled by a Binomial distribution

Experiment X Distribution
Roll a 10 6 sided die # of 1’s Bin(10, 1

6 )

Buy 1 tickets from a Lotto where 7 numbers are drawn from 50 # Jackpots Bin(1,
(
50
77

)−1
)

Generate each digit of a 5 digit number randomly from 1 to 9 # odd digits Bin(5, 5
9 )

Page 8 of 20



September 2, 2025 STAT521 – Week 3 Justin Ko

Relationship with the Hypergeometric Distribution: Intuitively, when the population is large
then sampling with or without replacement should not make much of a difference provided that the
sample size is small with respect to the population size. The Binomial distribution arises as a limit of
Hypergeometric distribution when the number of successes r is a fixed proportion of the population
size,

r

N
= p and N → ∞

Theorem 3 (Binomial Approximation of the Hypergeometric Distribution)

Let p ∈ (0, 1) and let X ∼ Hyp(N, pN, n) and Y ∼ Bin(n, p). Then for all k ∈ R,

lim
N→∞

P(X ≤ k) = P(Y ≤ k).

2.1.5 Geometric Distribution: Geo(p)

The geometric distributions models the number of fails until the first success.

Definition 16. Suppose a Bernoulli trial has a probability of success p. The independent trials are
repeated until a success has been observed. If X denotes the number of failures that we observed
before the first success, then we say X follows the geometric distribution, and is denoted by

X ∼ Geo(p)

� PMF:
pX(x) = p(1− p)x for x = 0, 1, 2, . . . .

� CDF:

FX(x) =

{
0, if x < 0,

1− (1− p)⌊x⌋+1 if ≥ 0

Example 6. The following experiments can be modeled by a uniform distribution:

Experiment X Distribution
Repeated flips of a coin # tails until the first head Geo(0.5)
Repeated flips of a coin # flips until the first head Geo(0.5) + 1

Memoryless Property: Intuitively, having a long string of failures should not mean that a success
is more likely when conducting independent experiments.

Theorem 4 (Memoryless Property)

Let X ∼ Geo(p) and s, t be non-negative integers. Then, the following holds

P(X ≥ s+ t |X ≥ s) = P(X ≥ t).

In fact, the geometric distribution is the only discrete distribution with this property.

2.1.6 Negative Binomial Distribution: NegBin(k, p)

The negative binomial distributions models the number of fails until a certain amount successes.
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Definition 17. Suppose a Bernoulli trial has a probability of success p. The independent trials are
repeated until k successes have been observed. If X denotes the number of failures that we observed
before k successes, then we say X follows the negative Binomial distribution, and is denoted by

X ∼ NegBin(k, p)

� PMF:

pX(x) =

(
x+ k − 1

x

)
pk(1− p)x for x = 0, 1, 2, . . . .

� CDF: There is no closed form in terms of elementary functions.

Example 7. The following experiments can be modeled by a negative binomial distribution:

Experiment X Distribution
Repeated flips of a coin # tails until 3 heads NegBin(3, 0.5)
Repeated flips of a coin # flips until 3 heads NegBin(3, 0.5) + 3

Comparison with Binomial Distribution: In the negative binomial distribution, you know the
number of successes, but you don’t know the number of trials (since # fails = # trials - # successes).
In the binomial distribution, you know the number of trials, but you don’t know the number of
successes. One can also interpret the coefficient in the PMF of the negative binomial as a negative
binomial coefficient (see Problem 4.10).

2.1.7 Poisson Distribution: Poi(µ)

The Poisson distribution models the number of occurrences of an event in a given period of time (or
space) when the events happen one after another and the occurrence of one event does not influence
another.

Definition 18. Let µ encode the mean rate of events, then we say X follows the Poisson distribution,
and is denoted by

X ∼ Poi(µ).

� PMF:

pX(x) = e−µµ
x

x!
for x = 0, 1, 2, . . . .

� CDF: There is no closed form in terms of elementary functions.

Example 8. The following experiments can be modeled by a negative binomial distribution:

Experiment X Distribution
Incoming calls at a call center (at rate 2 per hour) # of calls per hour Poi(2)
iPhone manufacturing with failure rate 5% # of faulty iPhones Poi(0.05)

Poisson Approximation of the Binomial: The Poisson distribution is an approximation of the
Binomial distribution when pn ≈ µ

n .

Theorem 5 (Poisson Approximation of the Binomial)

Given λ > 0, if p = pn → 0 in such a way such that npn → λ. Let X ∼ Bin(n, pn) and Y ∼ Poi(λ).
Then for all k ≥ 0,

lim
n→∞

P(X = k) = P(Y = k).
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3 Example Problems

Problem 3.1. Consider drawing a 5 card hand at random from a standard 52 card deck. What is
the probability that the hand contains at least 3 Kings?

Solution 3.1. This is modeled using a hypergeometric distribution. We have N = 52 cards, out of
which r = 4 are kings (“successes”), and we are sampling n = 5 cards without replacement from the
deck. The random number of kings, X, then satisfies X ∼ Hyp(N = 52, r = 4, n = 5). Thus, using
the PMF from earlier, we find

P (X ≥ 3) = P (X = 3) + P (X = 4) =

(
4
3

)(
48
2

)(
52
5

) +

(
4
4

)(
48
1

)(
52
5

) ≈ 0.00175

Problem 3.2. Suppose a tack when flipped has probability 0.6 of landing point up. If the tack is
flipped 10 times, what is the probability it lands point up more than twice?

Solution 3.2. This is modeled using a binomial distribution. Let X denote the number of times the
tack lands point up. Then X ∼ Bin(10, 0.6) and

P(X > 2) = 1− P(X ≤ 2)

= 1− [P(X = 0) + P(X = 1) + P(X = 2)]

= 1−
[(

10

0

)
0.600.410 +

(
10

1

)
0.610.49 +

(
10

2

)
0.620.48

]
≈ 0.9877

Problem 3.3. There are 5 stops on a bus line and 10 passengers on the bus. At every stop, there
is a machine that records how many passengers got off at that stop. Assume the passengers are each
equally likely to get off at any stop. Let X denote the number of passengers recorded by the machine
at the first stop. Find the PMF of X.

Solution 3.3. By our assumptions, each passenger chooses a bus stop independently, and there is a
1
5 chance of the passenger getting off at the first stop. We can model this with a binomial distribution,
which counts a success if the passenger gets off at the first stop. Therefore, X ∼ B(10, 0.2), so

pX(x) =

(
10

x

)
0.2x0.810−x,

for x ∈ {0, 1, . . . , 10}.

Alternative Solution: By the assumptions, the sample space Ω = [5]10 (which denotes where each
passenger got off) has equally likely outcomes. To find pX(x) = P(X = x), we want to count all the
possible events A such that A has exactly x 1’s appearing. There are

(
10
x

)
410−x possibilities since there

are
(
10
x

)
ways to choose which passengers got off at stop 1 (the number of cases), and 410−x possible

choices for the remaining passengers (the number of possibilities in each case). Since the probability
is uniform on Ω,

pX(x) =

(
10
x

)
410−x

510
=

(
10

x

)
1

5x
410−x

510−x
=

(
10

x

)
0.2x0.810−x.
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Remark 8. Clearly, pX is not uniform, so the number of passengers that got off at the first stop is
not uniform over the range X(Ω) = {0, 1, 2, . . . , 10}. This means that a sample space that encodes the
number of people that got off at a particular stop does not have equally likely outcomes.

Problem 3.4. Suppose you have a bag with 100 beads, 15 of which are red and the remaining ones
are blue. You take 5 beads out of the bag without replacement. Suppose we want to compute the
probability that 2 of the 5 sampled beads are red. The best model is the hypergeometric. Call
the resulting probability phyper. We approximate this probability by using an appropriate Binomial
distribution. Denote the probability (under the binomial model) that we have 2 red beads by pbinomial.
Compute phyper and pbinomial.

Solution 3.4. Under the true model X ∼ Hyp(N = 100, r = 15, n = 5), so

phyper = P(X = 2) =

(
15
2

)(
100−15
5−2

)(
100
5

) ≈ 0.13775

Let p = r/N = 0.15. If we assumed a binomial distribution Y ∼ Bin(5, 0.15), we’d get

pbinomial = P(Y = 2) =

(
5

2

)
0.1520.853 = 0.13818

which is quite close to the true probability.

Problem 3.5. A website is counting visitors to their website. Suppose that visitors visit the website
at random at a rate of 10 visitors per minute on average, and they visit the site independently and
individually from each other. Let X denote the number of visitors after 10 minutes. What is the
distribution of X?

Solution 3.5. Let t be measured in minutes. The rate is 10 visitors per minute, so Xt is a Poisson
process with rate λ = 10. Therefore, number of visitors in 10 minutes is

X ∼ X10 ∼ Poi(10 · 10) = Poi(100).

Problem 3.6. In the manufacturing process of commercial carpet, small faults occur at random in
the carpet according to a Poisson process at an average rate of 0.95 per 20 m2. One of the rooms
of a new office block has an area of 90 m2 and has been carpeted using the same commercial carpet
described above. What is the probability that the carpet in that room contains at least 4 faults?

Solution 3.6. Let t be measured in m2. The rate is 0.95 per 20 m2 or equivalently a rate of 0.95
20

faults per m2, so Xt is a Poisson process with rate λ = 0.95
20 . If X denotes the faults in the room, then

X ∼ X90 ∼ Poi
(
90 · 0.95

20

)
= Poi(4.275).

The complement of the event of at least 4 faults is equal to 3 or less faults, so

P(X ≥ 4) = 1− P(X ≤ 3) = 1− P(X = 0)− P(X = 1)− P(X = 2)− P(X = 3)

= 1− e−4.275
(
1 + 4.275 +

4.2752

2
+

4.2753

6

)
= 0.618.
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Problem 3.7. Website hits for a given website occur according to a Poisson process with a rate of
100 hits per minute. We say a second is a “break” if there are no hits in that second.

1. What is the probability p of a break in any given second?

2. Compute the probability of observing exactly 10 breaks in 60 consecutive non-overlapping sec-
onds.

3. Compute the probability that one must wait for 30 seconds to get 2 breaks.

Solution 3.7. Let t be measured in seconds. The rate is 100 hits per minute, or equivalently 100
60 hits

per second.

1. Xt is a Poisson denotes with rate λ = 100
60 . If X is the number of hits in one sec, then

X ∼ X1 ∼ Poi(100/60) = Poi(5/3).

A break means zero hits in one sec, so

p = P(X = 0) = e−
5
3

(
5
3

)0
0!

≈ 0.189.

2. Take 60 one-sec intervals. Each interval has a probability of p of having a break. Let Y be the
number of one-sec intervals (from 60 one-sec intervals) with a break. Then Y ∼ Bin(60, p), and

P(Y = 10) =

(
60

10

)
p10(1− p)50 ≈ 0.124

3. Let Z be the number of one-sec intervals one needs to wait until observing two breaks. Then,
Z ∼ NegBin(2, p) and

P(Z = 30) =

(
30 + 2− 1

30

)
p2(1− p)30 ≈ 0.002.

Problem 3.8. At a super busy coffee chain, customers arrive according to a Poisson Process at a rate
of λ = 5 customers per minute.

1. Find the probability that there are more than 2 customers in one minute.

2. Suppose you record the number of customers in 5 consecutive one-minute intervals. What is the
probability that in at least 3 of them there were more than 2 customers?

3. Find the probability that a minute with more than 2 customers actually had 6 customers

4. Suppose you are waiting until finally, there is one minute with more than 2 customers. Denote
by X the the number of minutes you need to wait. Find the PMF of X.

5. Suppose in 3 minutes, there were n customers. Find the probability that x of these came in the
first two minutes.

Solution 3.8. Let t be measured in minutes, and the rate is λ = 5 customers per minute, so Xt is a
Poisson process with rate λ = 5.
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1. If X is the number of customers in one minute, then X ∼ Poi(5 · 1). Thus,

p = P(X > 2) = 1− P(X ≤ 2)

= 1− P(X = 0)− P(X = 1)− P(X = 2)

= 1− e−5
(
1 + 5 +

52

2

)
≈ 0.875

2. Let Y be the number of one-minute intervals with more than two customers, then Y ∼ Bin(5, p)
with p from earlier. Thus,

P(Y ≥ 3) = P(Y = 3) + P(Y = 4) + P(Y = 5)

=

(
5

3

)
p3(1− p)2 +

(
5

4

)
p4(1− p) +

(
5

5

)
p5(1− p)0 ≈ 0.984

3. Let X be the number of customers in one minute. Thus,

P(X = 6 |X > 2) =
P(X = 6 and X > 2)

P(X > 2)
=

P(X = 6)

P(X > 2)
=

e−5 56

6!

0.875
≈ 0.167

4. Let Z be the number of minutes until first minute with more than 2 customers, then Z ∼ Geo(p)
with p from earlier. Thus,

fZ(x) = P(Z = x) = (1− p)xp, x = 0, 1, 2, . . .

5. We want to fine

P(x in first 2min | n in 3min) =
P(x in first 2min and n in 3min)

P(n in 3min)
.

We know that

� Denominator: The number of customers in 3 minutes follows a Poi(5 · 3) distribution, so

P(n in 3 min) = e−15 15
n

n!
, n = 0, 1, 2, . . .

� Numerator: Since non-overlapping intervals are independent,

P(x in first 2min and n in 3min) = P(x in first 2min and n− x in last min)

= P(x in first 2min) · P(n− x in last min)

= e−10 10
x

x!
· e−5 5n−x

(n− x)!

Combining and simplifying gives

P(x in first 2min | n in 3min) =

(
n

x

)(
2

3

)x (
1

3

)n−x

, x = 0, 1, . . . , n,

which is the PMF of Bin(n, 2/3).

Problem 3.9. Shiny versions of Pokemon are possible to encounter and catch starting in Generation
2 (Pokemon Gold/Silver). Normal encounters with Pokemon while running in grass occur according
to a Poisson process with rate 1 per minute on average. 1 in every 8192 encounters will be a Shiny
Pokemon, on average.
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1. Ash runs around in grass for 15 hours, what is the probability he will encounter at least one
Shiny pokemon?

2. How long would Ash have to run around in grass so that he has better than 50 percent chance
of encountering at least one Shiny pokemon?

Solution 3.9. Let t be measured in hours. The rate of normal encounters is 60 per hour, and the
rate of shinies are is 1

8192 encounters
60 enounters

hour = 60
8192 shinies per hour. Let X be number of pokemon

encountered after 1 hour, Y be the number of shiny pokemon encountered after one hour. Then

X ∼ X1 ∼ Poi(60) and Y ∼ Y1 ∼ Poi
( 60

8192

)
1. Let Z be the number of shiny encountered after 15 hours, then Z ∼ Y15 = Poi( 60

8192 · 15) =
Poi(0.1099), and

P(Z ≥ 1) = 1− P(Z = 0) = 1− e−0.1099 ≈ 0.104.

2. If Z is the number of shiny encountered after t hours, then Z ∼ Poi( 60
8192 · t). Then

P(Z ≥ 1) = 1− P(Z = 0) ≥ 0.5 ⇔ P(Z = 0) ≤ 0.5

⇔ e−
60

8192 ·t ≤ 0.5

⇔ − 60

8192
· t ≤ − log(2)

⇔ t ≥ log(2) · 8192
60

≈ 94.6

That mean Ash will have to run for at least 95 hours!

Problem 3.10. A bit error occurs for a given data transmission method independently in one out of
every 1000 bits transferred. Suppose a 64 bit message is sent using the transmission system. Let ptrue
be the probability that there are exactly 2 bit errors and papprox be the approximated probability that
there are exactly 2 bit errors obtained through the Poisson approximation. Find ptrue and papprox.

Solution 3.10.

1. Let X be the number of errors, then X ∼ Bin(64, 1/1000). We find

P(X = 2) =

(
64

2

)(
1

1000

)2 (
999

1000

)64−2

≈ 0.00189.

2. n is large and p is small, so X follows approximately a Poisson with µ = np = 64/1000, so

P(X = 2) = e−
64

1000

(
64

1000

)2
2!

≈ 0.00192.

As expected by the Poisson approximation of the Binomial, both values are close.
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4 Proofs of Key Results

Problem 4.1. Find an example of random variables such that X ∼ Y , but X ̸= Y .

Solution 4.1. We define X = Bern(0.5) and Y = 1 −X. Clearly, X ̸= Y since X = 1 =⇒ Y = 0
and X = 0 =⇒ Y = 1. However,

fY (1) = P(Y = 1) = P(1−X = 1) = P(X = 0) =
1

2

and

fY (0) = P(Y = 0) = P(1−X = 0) = P(X = 1) =
1

2
,

so Y has the same PMF as a Bern(0.5) random variable, and in FX and FY are identical since the
CDF is in direct correspondence with the PMF.

Remark 9. This is example is equivalent to the following. You flip a single coin. Let X denote the
number of heads, and let Y denote the number of tails. It is clear that X ̸= Y , but X ∼ Y since,

P(T ) = P(Y = 1) = P(X = 1) = P(H) =
1

2

and

P(H) = P(Y = 0) = P(X = 0) = P(T ) =
1

2
.

Problem 4.2. Find an example of random variables that is discrete while its underlying sample space
is not.

Solution 4.2. A random variable may be discrete even though the underlying sample space might
not be. For example, if Ω = [0, 1], the random variable

X(ω) = 1(ω ≤ 0.5) =

{
1, if ω ≤ 0.5

0, otherwise
.

Problem 4.3. Derive the PMF for the hypergeometric function.

Solution 4.3. Recall that N denotes the size of the population, and there are r successes and N − r
failures. We consider samples of size n from the population without replacement, and let X denote
the number of successes in the draw. We first find the support of pX .

� We cannot have more successes x than the total successes r ⇒ x ≤ r.

� We cannot have more successes x than the total trials n ⇒ x ≤ n.

� We cannot have less than 0 successes ⇒ x ≥ 0.

� When there are more trials than failures n > (N − r) we will for sure have at least n− (N − r)
successes ⇒ x ≥ n− (N − r).

� Altogether, max{0, n− (N − r)} ≤ x ≤ min{r, n}.
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We now find the pX(x) for max{0, n − (N − r)} ≤ x ≤ min{r, n}. There are
(
N
n

)
ways to draw n

items from a population of size N without replacement, which is our sample space. We now count the
number of ways to get exactly x successes in this sample. There are

(
r
x

)
ways to pick x successes out of

the possible r successes, and there are
(
N−r
n−x

)
ways to pick the remaining failures, and so the product

encodes the total number of ways to get exactly x successes in this sample. Since the probability is
uniform on the sample space of draws,

pX(x) = P(X = x) =

(
r
x

)(
N−r
n−x

)(
N
n

) .

Problem 4.4. Let X1, . . . , Xn are independent Bern(p) random variables. Show that the sum Sn =
X1 + · · ·+Xn has a Bin(n, p) distribution. In other words, show that Sn ∼ Bin(n, p).

Solution 4.4. We see that Sn can take values in {0, 1, . . . , n} since they are the sum of random
variables that takes values in {0, 1}. We want to find pX(k). Let (x1, . . . , xn) ∈ {0, 1}n be such that∑

i xi = k, which is equivalent to saying that exactly k coordinates are 1. We have

P((X1, . . . , Xk) = (x1, . . . , xn)) = P(X1 = x1) . . .P(Xn = xn) = pk(1− p)1−k

by independence. There are
(
n
k

)
ways to choose the coordinates of (x1, . . . , xn) such that exactly k are

1 , so by symmetry.

pX(k) = P(Sn = k) =
∑

(x1,...,xn)∑
xi=k

P((X1, . . . , Xk) = (x1, . . . , xn)) =

(
n

k

)
pk(1− p)1−k.

Remark 10. We can think of the Xi as denoting whether the ith independent draw was a success.
The total number of successes in n draws with replacement was a success (since we need the probability
of success to be the same for all Xi) is encoded by Sn, which has Binomial distribution.

Problem 4.5. Let p ∈ (0, 1) and let X ∼ Hyp(N, pN, n) and Y ∼ Bin(n, p). Show that for all x ∈ R,

lim
N→∞

P(X ≤ x) = P(Y ≤ x).

Solution 4.5. Recall that for pX is supported on integers such that

max{0, n− (N −Np)} ≤ x ≤ min{Np, n}

which is equal to 0 ≤ x ≤ n for N sufficiently large since p ∈ (0, 1). Therefore, both PMF functions
are discrete and supported on {0, 1, . . . , n} so it suffices to compute its PMF functions, from which
one can trivially compute the CDF. We first rewrite the PMF of pX with r = pN ,

pX(x) =

(
r
x

)(
N−r
n−x

)(
N
n

) =
r!

x!(r − x)!
· (N − r)!

(n− x)!(N − r − (n− x))!
· n!(N − n)!

N !

=
n!

x! · (n− x)!
· r!

(r − x)!
· (N − r)!

(N − r − (n− x))!

=

(
n

x

)
·

x∏
i=1

(r − x+ i) ·
n−x∏
j=1

(N − r − (n− x) + j)

n∏
k=1

1

(N − n+ k)

=

(
n

x

)
·

x∏
i=1

r − x+ i

N − x+ i
·
n−x∏
j=1

(N − r − (n− x) + j)

N − n+m
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The result follows from the fact that r
N → p, so for any fixed i and j,

lim
N→∞

r − x+ i

N − x+ i
= p and lim

N→∞

(N − r − (n− x) + j)

N − n+m
= 1− p

which implies that

lim
N→∞

pX(x) =

(
n

x

)
px(1− p)n−x.

Problem 4.6. If p ∈ (0, 1), show that

pX(x) = p(1− p)x for x = 0, 1, 2, . . . .

is a valid PMF.

Solution 4.6. Clearly, pX(x) ≥ 0 on its support. We need to check if the sum is over the support 1.
Using the formula for the sum of a geometric series i.e. if |q| < 1, then

∑∞
k=0 q

k = 1
1−q , we see that∑

x≥0

p(1− p)x =
p

1− (1− p)
= 1

as required.

Problem 4.7. Find the CDF of a Geo(p) random variable.

Solution 4.7. For x = 0, 1, 2, . . . , we have by the sum of a geometric series i.e. if |q| < 1, then∑n−1
k=0 q

k = 1−qn

1−q that

FX(x) =
∑
k≤x

p(1− p)k = p
1− (1− p)x+1

1− (1− p)
= 1− (1− p)x+1.

Clearly, FX(x) = 0 for x < 0 and by linearly interpolating between the discontinuities, we see that
FX(x) = 1− (1− p)⌊x⌋+1 for x ≥ 0.

Problem 4.8. Let X ∼ Geo(p) and s, t be non-negative integers. Show that

P(X ≥ s+ t |X ≥ s) = P(X ≥ t).

Solution 4.8. Notice that for any integer r,

P(X ≥ r) = 1− P(X ≤ r − 1) = 1− FX(r − 1) = (1− p)r.

Therefore,

P(X ≥ s+ t |X ≥ s) =
P(X ≥ s+ t,X ≥ s)

P(X ≥ s)
=

P(X ≥ s+ t)

P(X ≥ s)
=

(1− p)s+t

(1− p)s
= P(X ≥ t).

Problem 4.9. (∗) Suppose that X is discrete and for all s, t be non-negative integers

P(X ≥ s+ t |X ≥ s) = P(X ≥ t).

Show that X must have a Geometric distribution.
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Solution 4.9. By assumption, for every n ≥ 1

P(X ≥ n+ 1 |X ≥ 1) =
P(X ≥ n+ 1)

P(X ≥ 1)
= P(X ≥ n).

Rearranging this implies that

P(X ≥ n+ 1) = P(X ≥ 1)P(X ≥ n) = (1− P(X = 0))P(X ≥ n) = (1− p)P(X ≥ n)

where we set p = P(X = 0) (which is consistent with the meaning in the Geometric distribution).
Since this holds for all n, we can continue inductively to see that

P(X ≥ n+ 1) = (1− p)n+1.

Therefore,

P(X = n) = P(X ≥ n)− P(X ≥ n+ 1) = (1− p)n − (1− p)n+1

= (1− (1− p))(1− p)n = p(1− p)n.

Problem 4.10. (∗) Show that (
x+ k − 1

x

)
= (−1)x

(
−k

x

)
.

Solution 4.10. By definition,(
x+ k − 1

x

)
=

(x+ k − 1)(x+ k − 2) · · · (k + 1)k

x!
.

We can factor out (−1) from each term in the numerator (there are a total of x of them) to conclude
that

(x+ k − 1)(x+ k − 2) · · · (k + 1)k

x!
= (−1)x

(−k)(−k − 1) · · · (−k − x+ 2)(−k − x+ 1)

x!

= (−1)x
(
−k

x

)
if we extend the definition of the binomial coefficient to negative integers.

Problem 4.11. Show that

pX(x) = e−λλ
x

x!
for x = 0, 1, 2, . . . .

is a valid PMF.

Solution 4.11. Clearly, pX(x) is non-negative on its support. We need to check if the sum is over

the support 1. Using the exponential series et =
∑∞

k=0
tk

k! , we have∑
x≥0

e−λλ
x

x!
= e−λ

∑
x≥0

λx

x!
= e−λ+λ = 1.

Problem 4.12. (∗) Let λ > 0, and suppose that p = pn → 0 in such a way such that npn → λ. Let
X ∼ Bin(n, pn) and Y ∼ Poi(λ). Show that for x ≥ 0,

lim
n→∞

P(X = k) = P(Y = k).
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Solution 4.12. By assumption, p = λ
n . For every fixed integer x ≥ 0,

pX(x) =

(
n

x

)
px(1− p)n−x =

n!

x!(n− x)!

(λ
n

)x(
1− λ

n

)n−x

=
λx

x!

(
1− λ

n

)n(
1− λ

n

)−x x−1∏
k=0

n− k

n
.

For each fixed x, we have

lim
n→∞

(
1− λ

n

)−x

= 1 and lim
n→∞

x−1∏
k=0

n− k

n
= 1.

Furthermore, e−λ = limn→∞(1− λ
n )

n by definition, so

lim
n→∞

P(X = x) = lim
n→∞

λx

x!

(
1− λ

n

)n

︸ ︷︷ ︸
→e−λ

(
1− λ

n

)−x

︸ ︷︷ ︸
→1

x−1∏
k=0

n− k

n︸ ︷︷ ︸
→1

= e−λλ
x

x!
= P(Y = x).

Furthermore, P(X = x) = P(Y = x) = 0 for all other values.
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