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1 The Law of Large Numbers

A general rule in probability is that the aggregate behavior of random events become more predictable
when we have many independent sources of randomness. Suppose that we run an experiment where
we flip a coin n times. If we record the number of heads then we expect that

# of heads

n
≈ 1

2
.

The more coins we flip, the closer the proportion of heads will be to 0.5. Of course, the outcomes are
random so it might never be exactly 0.5, but one expects that somehow the events become less random
the more experiments we run. This intuition can be made precise, and this is called the law of large
numbers.

1.1 Law of Large Numbers

Consider i.i.d. random variables X1, . . . , Xn with mean µ and variance σ2. Recall that the sample
mean is given by

X̄n =
1

n

n∑
i=1

Xi.

Using the properties of the expected and variance of linear combinations, it follows that

E[X̄n] =
1

n

n∑
i=1

E[Xi] = µ and Var(X̄n) =
1

n2

n∑
i=1

Var(Xi) =
σ2

n
.

This suggests that the variance of the sample mean shrinks as n → ∞. The weak law of large number
says that the probability the sample mean is not equal to its expected value goes to zero.

Theorem 1 (Weak Law of Large Numbers)

Let X1, . . . , Xn be i.i.d. with mean µ and finite variance. Then for any ϵ > 0,

P(|X̄n − µ| > ϵ) → 0 as n → ∞.

In other words, X̄n → µ in probability.

In fact, we have a stronger statement that doesn’t even need to assume that the variance is finite. The
probability that the sample mean takes the value µ in the limit is exactly 1.

Theorem 2 (Strong Law of Large Numbers)

Let X1, . . . , Xn be i.i.d. with mean µ. Then

P({X̄n(ω) → µ}) = 1

In other words, X̄n → µ almost surely.

Remark 1. There are many notions of the convergence of random variables. We have seen convergence
in distribution already, and we have just introduced the notions of convergence in probability and
almost sure convergence. We have that almost sure convergence implies convergence in probability, so
it is a stronger notion of convergence. The reverse implication is not true in general.

1.2 Connection Between Tail Probabilities and Moments

The moments of the random variable can be used to control the probability that a random variable
takes extreme outlying values away from its expected value.
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Theorem 3 (Markov’s Inequality)

For any random variable and constant a > 0,

P(|X| ≥ a) ≤ E[|X|]
t

.

Remark 2. This is intuitive, because a small expected value means that the probability that |X| is
big should be small. Furthermore, the more extreme the outlier is (which is measured by t), the more
rare it should be. For example, if X denotes income of a randomly selected person in a city, then

P(X ≥ 2E[X]) ≤ 1

2

since we can’t have more than half the people in the city making twice the average income.

This is a good first step to controlling the tail events since it only requires some information about
the first moment E[|X|]. However, if we have more information such as control of the second moment,
then we have better control of the tails.

Corollary 1 (Chebyshev’s Inequality)

Let X have mean µ. Then for any constant a > 0,

P(|X − µ| ≥ a) ≤ E[(X − µ)2]

a2
=

Var(X)

a2
.

Remark 3. Notice that the tail probability in Chebyshev’s Inequality is now bounded by t−2 instead
of t−1 so it gives us better control than Markov’s inequality.

If we have even more information about the moments, then we can get upgrade the bound to give us
exponential control of the tails.

Corollary 2 (Chernoff Bound)

For any random variable and constantss t > 0 and a > 0

P(X ≥ a) ≤ E[etX ]

eta
= MX(t)e−ta.

There is an extra parameter t in the statement of the Chernoff bound, so we can minimize the upper
bound as a function of t to get the better control of the tail probabilities.

1.3 Example Problems

Problem 1.1. An insurance company sells 1, 000 independent health insurance policies. Suppose that
for any policy holder, the expected claim is 5, 000 but the variance is 2, 000, 000 since the costs of the
treatment can vary a lot.

1. What can the company say about the average claim over all 1, 000 policies?

2. What is a bound on the probability that the insurance company has to pays more than 10, 000, 000
in a given year.
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Solution 1.1.

Part 1: The law of large number states that the average claim

X̄ =
1

n

n∑
i=1

Xi → E[X1] = 5000.

So, since n = 1000 is quite a large number of policies, the average claim will be close to 5000 even
though the individual claim amounts can vary widely.

Part 2: Notice that T =
∑1000

i=1 Xi the total total claim amount satisfies

E(T ) =
1000∑
i=1

E[Xi] = 5, 000, 0000 and Var(T ) =

1000∑
i=1

Var

(
Xi

)
= 2, 000, 000, 000.

Therefore, by Chebyshev’s inequality

P(T > 10, 000, 0000) = P(T − 5, 000, 000 > 5, 000, 000)

≤ P(|T − 5, 000, 000| > 5, 000, 000)

≤ Var(T )

5, 000, 0002
=

2, 000, 000, 000

5, 000, 0002
= 0.0008.

Remark 4. If we used Markov’s inequality instead, we would have gotten

P(T > 10, 000, 0000) ≤ E(T )
10, 000, 000

=
1

2

which is true, but not as good of a bound as if we used information about the variance.

Problem 1.2. Suppose a machine produces metal rods whose lengths (in cm) are nonnegative random
variables L with mean 100.

1. Use Markov’s inequality to bound the probability that a rod exceeds 150 cm.

2. Suppose that we now know that the variance of the rods are 25 cm2. Use Chebyshev’s inequality
to bound the probability that a rod exceeds 150 cm.

Solution 1.2.

Part 1: By Markov’s inequality (since the lengths of the rods are non-negative)

P(L > 150) ≤ E[L]
150

=
2

3
.

Part 2: By Markov’s inequality (since the lengths of the rods are non-negative)

P(L > 150) ≤ E[L]
150

=
2

3
.

Problem 1.3. Let Y be the average income (in thousands) of 100 independently surveyed people
from a population with mean 50 and variance 100. Use Chebyshev’s inequality to bound

P(|Y − 50| ≥ 10).
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Solution 1.3. We have that Y is the average of, so

Var(Y ) = Var

(
1

100

100∑
i=1

Xi

)
=

100Var(X)

1002
= 1

Therefore,

P(|Y − 50| ≥ 10) ≤ Var(Y )

102
=

1

100
,

which is quite small even though the standard deviation of a single person is 10.

1.4 Proofs of Key Results

Problem 1.4. Prove Theorem 1, the weak law of large number.

Solution 1.4. We have that Var(X̄n) =
1
n2

∑n
i=1 Var(Xi) =

σ2

n . For any ϵ > 0, Chebyshev’s inequal-
ity implies that

P(|X̄n − µ| > ϵ) =
Var(X̄n)

ϵ2
=

σ2

ϵ2n
→ 0

as n → ∞.

Problem 1.5. Prove Theorem 3, Markov’s inequality.

Solution 1.5. For any a > 0, we define Y = |X|
a . It suffices to show that P(Y > 1) ≤ E[Y ] since

P(|X| > a) = P(Y > 1) ≤ E[Y ] =
E[|X|]

a
.

Notice that we always have

1(Y ≥ 1) =

{
1 Y ≥ 1

0 Y < 1
≤ Y.

Monotonicity of the expected value implies that

E[1(Y ≤ 1)] ≤ E[Y ] =⇒ P(Y > 1) ≤ E[Y ].

Problem 1.6. Prove Corollary 1 and Corollary 2. That is, for any t > 0 and a > 0, show that

1.

P(|X − µ| ≥ a) ≤ Var(X)

a2

2.

P(X ≥ t) ≤ E[etX ]

eta

Solution 1.6. Both of these statements are direct consequences of Markov’s inequality.

Part 1: We have
P(|X − µ| ≥ a) = P(|X − µ|2 ≥ a2),
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so Markov’s inequality implies that

P(|X − µ|2 ≥ a2) ≤ E[|X − µ|2]
a2

=
Var(X)

a2
.

Part 2: We have
P(X ≥ a) = P(etX ≥ eta),

so Markov’s inequality implies that

pP (etX ≥ eta) ≤ E[etX ]

eta
= MX(t)e−ta.
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2 The Central Limit Theorem
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