
November 16, 2019 MAT186 – Week 7 Justin Ko

1 Indefinite Integrals

Definition 1. The antiderivative of f(x) on [a, b] is a function F (x) such that F ′(x) = f(x) for all
x ∈ [a, b]. The antiderivative is not unique since for any antiderivative F (x) of f(x), F (x) + C is also
an antiderivative for all integration constants C ∈ R. We will use the notation∫

f(x) dx = F (x) + C

called the indefinite integral of f to denote the family of all antiderivatives of f .

1.1 Table of Integrals (omitting the integration constant)

Elementary Functions∫
xa dx =

1

a+ 1
· xa+1, a 6= −1 (1)

∫
1

x
dx = ln |x| (2)

Exponential and Logarithms∫
ex dx = ex (3)

∫
ln(x) dx = x ln(x)− x (4)

∫
ax dx =

ax

ln(a)
(5)

∫
loga(x) dx =

x ln(x)− x
ln(a)

(6)

Trigonometric Functions∫
sin(x) dx = − cos(x) (7)

∫
cos(x) dx = sin(x) (8)

∫
tan(x) dx = − ln | cos(x)| (9)

∫
cot(x) dx = ln | sin(x)| (10)

∫
sec(x) dx = ln | tan(x) + sec(x)| (11)

∫
csc(x) dx = − ln | cot(x) + csc(x)| (12)

Rational Functions∫
1

1 + x2
dx = tan−1(x) (13)

∫
1√

1− x2
dx = sin−1(x) (14)

∫
1

x
√
x2 − 1

dx = sec−1(|x|) (15)

Hyperbolic Functions∫
sinh(x) dx = cosh(x) (16)

∫
cosh(x) dx = sinh(x) (17)

∫
tanh(x) dx = ln | cosh(x)| (18)

1.2 Basic Property

For constants a, b ∈ R and integrable functions f and g, we have

Linearity: ∫
(af(x) + bg(x)) dx = a

∫
f(x) dx+ b

∫
g(x) dx.

We will introduce more basic properties in the coming weeks.
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1.3 Example Problems

1.3.1 Finding Indefinite Integrals

Problem 1.1. (?) Find the indefinite integral∫
e−7x dx.

Solution 1.1. It is easy to check that − 1
7 · e

−7x is an antiderivative of e−7x. Therefore,∫
e−7x dx = −1

7
· e−7x + C.

Problem 1.2. (??) Find the indefinite integral∫
x3 + 8

x
dx.

Solution 1.2. Using the linearity property, we have∫
x3 + 8

x
dx =

∫
x2 dx+ 8

∫
1

x
dx =

1

3
x3 + 8 ln |x|+ C.

1.3.2 Checking Antiderivatives

Strategy: To check if a function F (x) is an antiderivative of f , it suffices to just differentiate F and
check if F ′(x) = f(x).

Problem 1.3. (??) Check that both − sin−1(x) and cos−1(x) are antiderivatives of

−1√
1− x2

on (−1, 1).

Show that
cos−1(x) + sin−1(x) =

π

2
.

Solution 1.3. From the table of derivatives, we have

d

dx
(− sin−1(x)) =

−1√
1− x2

and
d

dx
cos−1(x) =

−1√
1− x2

.

so both − sin−1(x) and cos−1(x) are antiderivatives of −1√
1−x2

on its domain. We know that all an-

tiderivatives on an interval differ by an integration constant, that is cos−1(x) = − sin−1(x) + C for
x ∈ (−1, 1). To find this integration constant, we can evaluate our functions at 0,

cos−1(0) =
π

2
and − sin−1(0) = 0 =⇒ cos−1(0) = − sin−1(0) + C =⇒ C =

π

2
.

Since the difference of any two antiderivatives is a constant, we conclude that the two antiderivatives
must differ by π

2 for all x in the domain,

cos−1(x) = − sin−1(x) +
π

2
=⇒ cos−1(x) + sin−1(x) =

π

2
.
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2 Differential Equations

2.1 Separable Differential Equations

Suppose that we want to find the antiderivative of some special implicit functions. In particular,
suppose that we want to find a function y such that it satisfies the differential equation

dy

dx
= f(x)g(y)

for some functions f(x) and g(y). We can find the solution by separating variables and integrating
both sides,

dy

dx
= f(x)g(y) =⇒ dy

g(y)
= f(x)dx =⇒

∫
1

g(y)
dy =

∫
f(x) dx =⇒ G(y) = F (x) + C

where G(y) is the antiderivative of 1
g(y) and F (x) is the antiderivative of f(x). This procedure gives

an implicit formula formula for a function y that satisfies the differential equation. If we are given an
initial condition, then we can solve for the integration constant C.

2.2 Example Problems

2.2.1 Initial Value Problems

Strategy: We first separate variables and integrate to recover a general form of the solution in terms
of some yet to be determined integration constants. Next, we plug in the initial conditions to solve for
the integration constants.

Problem 2.1. (?) Suppose the velocity of a particle is given by

v(t) = sin(t)− cos(t).

Find the position function s(t) of the particle given that s(0) = 0.

Solution 2.1. The rate of change of position is velocity, so we have the differential equation

v(t) =
ds

dt
= sin(t)− cos(t).

Separating variables and integrating, we have

ds

dt
= sin(t)− cos(t)⇒

∫
ds =

∫
sin(t)− cos(t) dt⇒ s = − cos(t)− sin(t) + C.

To solve for the integrating constant, since s(0) = 0, we have

0 = s(0) = − cos(0)− sin(0) + C = −1 + C ⇒ C = 1.

Therefore, the position is given by

s(t) = − cos(t)− sin(t) + 1.

Problem 2.2. (??) Suppose the acceleration of a particle is given by

a(t) = t+ 1.

Find the position function s(t) of the particle given that s(0) = 0 and s(1) = 2.
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Solution 2.2. The rate of change of velocity is acceleration, so we have the differential equation

dv

dt
= t+ 1.

Separating variables and integrating, we have

dv

dt
= t+ 1⇒

∫
dv =

∫
t+ 1 dt⇒ v =

t2

2
+ t+ C.

The rate of change of position is velocity, so using the fact above, we have the differential equation

ds

dt
=
t2

2
+ t+ C.

Separating variables and integrating, we have

ds

dt
=
t2

2
+ t+ C ⇒

∫
ds =

∫
t2

2
+ t+ C dt⇒ s =

t3

6
+
t2

2
+ Ct+D.

To solve for the integrating constants C and D, since s(0) = 0, we have

0 = s(0) = D ⇒ D = 0.

And since s(1) = 2, we have

2 = s(1) =
1

6
+

1

2
+ C ⇒ C = 2− 1

6
− 1

2
=

4

3

Therefore, the position is given by

s(t) =
t3

6
+
t2

2
+

4t

3
.

2.2.2 Growth and Decay Problems

Problem 2.3. (? ? ?) The rate of growth of a population P is modeled by

dP

dt
= kP

where k 6= 0. Suppose that the initial population P (0) = P0 for some constant P0 > 0. Find the
population function P (t). How long will it take for the population to double?

Solution 2.3. Separating variables and integrating, we have

dP

dt
= kP ⇒

∫
dP

P
=

∫
kdt⇒ ln |P | = kt+ C

Since P (t) must be positive in a reasonable model, |P | = P , so we can exponentiate both sides to
conclude

P = ekt+C = eCekt.

To solve for the integrating constants C, since P (0) = P0, we have

P0 = P (0) = eCek·0 = eC ⇒ lnP0 = C.

Therefore, the population is given by

P (t) = elnP0ekt = P0e
kt.

To find the time for the population to double, we want to find the t such that P (t) = 2P0. That is,

2P0 = P0e
kt ⇒ ekt = 2⇒ kt = ln(2)⇒ t =

ln(2)

k
.

In particular, if k < 0 (we have a decreasing population) then we have our population will never double.
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Problem 2.4. (???) A pizza is put in a 200◦C oven and heats up according to the differential equation

dH

dt
= −k(H − 200), where k > 0.

The pizza is put in the oven at 20◦C and is removed 30 minutes later at a temperature of 120◦C. Find
the proportionality constant k.

Solution 2.4. The general solution to the differential equation is

dH

dt
= −k(H − 200),

can be solved using separation of variables,

dH

dt
= −k(H − 200)⇒

∫
dH

(H − 200)
=

∫
−kt dt⇒ ln |H − 200| = −kt+ C

Solving for H and using the fact H − 200 < 0 in a reasonable model, we see that

ln |H − 200| = −kt+ C ⇒ ln(200−H) = −kt+ C ⇒ H = 200−De−kt

where D = eC > 0. To find D, we can use the fact that at H(0) = 20,

20 = H(0) = 200−D =⇒ D = 180.

Since H(30) = 120, we have

120 = H(30) = 200− 180 · e−30k =⇒ k = − 1

30
· ln 80

180
≈ 0.027.

Problem 2.5. (? ? ?) Find the general form of a function y(x) such that

dy

dx
= yx.

Solution 2.5. Separating variables and integrating, we have

dy

dx
= yx⇒

∫
1

y
dy =

∫
x dx⇒ ln |y| = x2

2
+A,

for some constant A. Solving for y we get

|y| = e
x2

2 +A ⇒ y = ±eAe x2

2 .

If we define the non-zero constant B = ±eA, then we have

y = Be
x2

2 , where B is some non-zero constant.

However, notice that y ≡ 0 also satisfies dy
dx = yx, so y = 0 is also a solution. Therefore, the most

general form of our solution is

y = Ce
x2

2 , where C is some constant.

Remark: We can check that y(x) = Ce
x2

2 satisfies our differential equation. Notice that by the chain
rule, we have

dy

dx
=

d

dx
Ce

x2

2 = Ce
x2

2︸ ︷︷ ︸
y

·x = yx.

Remark: This example also explains how to remove the absolute value sign that appears when we
take the antiderivative of 1

y and the usual approach one can take to absorb the resulting plus or minus
sign into the constant of integration. For example, the solution for the population growth model in
Problem 2.3 can be extended to negative populations or 0 initial populations using this argument.
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3 Definite Integrals

Recall that the definite integral of f(x) is defined as∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i ) ∆x,

where ∆x = b−a
n and x∗i ∈ [a+ (i− 1)∆x, a+ i∆x].

3.1 Basic Properties

Changing the Index: ∫ b

a

f(x) dx =

∫ b

a

f(t) dt.

Linearity: If c, d ∈ R ∫ b

a

cf(x) + dg(x) dx = c

∫ b

a

f(x) dx+ d

∫ b

a

g(x) dx.

Monotonicity: If f(x) ≤ g(x) for all x ∈ [a, b] then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

Splitting the Region of Integration: For any a, b, c,∫ a

a

f(x) dx = 0 and

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx and

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

Symmetry: If f is integrable,

f odd =⇒
∫ a

−a
f(x) dx = 0 and f even =⇒

∫ a

−a
f(x) dx = 2

∫ a

0

f(x) dx.

3.1.1 Fundamental Theorem of Calculus

The fundamental theorem of calculus links the notions of differentiation and integration. Consider the
area function of f from a to x,

A(x) =

∫ x

a

f(t) dt.

We expect that the rate of change of the area at the point x = b should be proportional to the height
of the function f(b), that is A′(b) = f(b). We can think of differentiation as the ‘inverse of integration’.
This notion is made precise with the fundamental theorem of calculus.

Theorem 1 (Fundamental Theorem of Calculus). Suppose f is a continuous function on [a, b]. Then

1. A(x) is an antiderivative of f on (a, b). In particular, for all x ∈ (a, b),

A′(x) =
d

dx

∫ x

a

f(t) dt = f(x).

2. If F is an antiderivative of f on [a, b], then∫ b

a

f(x) dx =

∫ b

a

F ′(x) dx = F (x)
∣∣∣x=b
x=a

= F (b)− F (a).

Page 6 of 10



November 16, 2019 MAT186 – Week 7 Justin Ko

Proof. We start by proving the first part of the fundamental theorem of calculus.

Proof of Part 1: Let A(x) be the area function of f from a to x

A(x) =

∫ x

a

f(t) dt.

We can compute the derivative using the limit definition. Let x ∈ (a, b), we have

A′(x) = lim
h→0

A(x+ h)−A(x)

h
= lim
h→0

∫ x+h
a

f(t) dt−
∫ x
a
f(t) dt

h
= lim
h→0

∫ x+h
x

f(t) dt

h
.

Let m(h) = mint∈[x−|h|,x+|h|] f(t) and M(h) = maxt∈[x−|h|,x+|h|] f(t) be the corresponding maximum
and minimum of f(t) on the interval [x − |h|, x + |h|]. These quantities exist by the Extreme Value
Theorem because f is continuous and the interval is closed. We can now apply the squeeze theorem
to compute our limit. For t ∈ [x− |h|, x+ |h|],

m(h) ≤ f(t) ≤M(h)⇒
∫ x+h
x

m(h) dt

h
≤
∫ x+h
x

f(t) dt

h
≤
∫ x+h
x

M(h) dt

h
also holds for h < 0

⇒ m(h)(x+ h− x)

h
≤
∫ x+h
x

f(t) dt

h
≤ M(h)(x+ h− x)

h

⇒ m(h) ≤
∫ x+h
x

f(t) dt

h
≤M(h).

Notice that by continuity, we have limh→0m(h) = f(x) and limh→0M(h) = f(x) so

A′(x) =
d

dx

∫ x

a

f(t) dt = lim
h→0

∫ x+h
x

f(t) dt

h
= f(x).

Proof of Part 2: From the Part 1, we know that A(x) is an antiderivative of f(x) on [a, b]. If F (x) is
another antiderivative of f , then we know that A(x) = F (x) +C for some integration constant C and
all x ∈ [a, b]. To find the integration constant, we evaluate our function at x = a and conclude

A(a) = F (a) + C =⇒ 0 = F (a) + C =⇒ C = −F (a).

Therefore, ∫ b

a

f(t) dt = A(b) = F (b) + C = F (b)− F (a).

Remark. The fundamental theorem of calculus says we can think of differentiation and integration
as “inverse” operations. For example, the first part of the fundamental theorem states that

d

dx

∫ x

a

f(t) dt = f(x),

so differentiation “cancels” the integration. On the other hand, the second part of the fundamental
theorem of calculus states that ∫ x

a

d

dt
f(t) dt = f(x)− f(a),

so integration “cancels” differentiation (at least up to a constant).
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3.2 Example Problems

3.2.1 Properties of Definite Integrals

Problem 3.1. (?) If
∫ 6

1
f(x) dx = 4,

∫ 2

1
f(x) dx = 3, and

∫ 6

5
f(x) dx = 7, find

∫ 5

2
f(x) dx.

Solution 3.1. Using the fact that∫ 6

1

f(x) dx =

∫ 2

1

f(x) dx+

∫ 5

2

f(x) dx+

∫ 6

5

f(x) dx,

we have ∫ 5

2

f(x) dx =

∫ 6

1

f(x) dx−
∫ 2

1

f(x) dx−
∫ 6

5

f(x) dx = 4− 3− 7 = −6.

Problem 3.2. (??) The cumulative density function of the exponential random variable is a function
defined on [0,∞) given by

Fλ(x) = λ

∫ x

0

e−λt dt,

where λ > 0 is a fixed constant. Express the definite integral
∫ 9

5
e−λt dt in terms of Fλ(x).

Solution 3.2. We start by splitting the region of integration∫ 9

5

e−λt dt =

∫ 0

5

e−λt dt+

∫ 9

0

e−λt dt = −
∫ 5

0

e−λt dt+

∫ 9

0

e−λt dt.

We now multiply and divide by λ to conclude∫ 9

5

e−λt dt =
1

λ

(
λ

∫ 9

0

e−λt dt− λ
∫ 5

0

e−λt dt

)
=

1

λ
· (Fλ(9)− Fλ(5)).

Problem 3.3. (??) Suppose that f(x) is an odd function, i.e. f(−x) = −f(x). Prove that its integral
F (x) =

∫ x
a
f(t) dt is even for all choices of a ∈ R.

Solution 3.3. It suffices to show that F (−x) = F (x), that is F (x) − F (−x) = 0. This follows
immediately from the properties of integration,

F (x)− F (−x) =

∫ x

a

f(t) dt−
∫ −x
a

f(t) dt =

∫ x

a

f(t) dt+

∫ a

−x
f(t) dt =

∫ x

−x
f(t) dt = 0,

since f(t) is odd, so its integral around a symmetric interval is 0 by symmetry.

3.2.2 Application of the Fundamental Theorem of Calculus Part 1

Problem 3.4. (?) Let g(x) =
∫ x
−5e
−t2 dt. Find g′(x).

Solution 3.4. By the fundamental theorem of calculus, we have

g′(x) = e−x
2

.
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Problem 3.5. (??) Let g(x) =
∫ ln(x)

0
e−t dt. Find g′(x).

Solution 3.5. Let h(x) =
∫ x
0
e−t dt. Notice that g(x) = h(ln(x)). Therefore, by the fundamental

theorem of calculus and the chain rule, we have

g′(x) = h′(ln(x)) · d
dx

ln(x) = e− ln(x) · 1

x
= eln(x

−1) · 1

x
=

1

x2
.

We used the fact that h′(x) = d
dx

∫ x
0
e−t dt = e−x by the fundamental theorem of calculus.

Remark: If we used the second part of the fundamental theorem of calculus, then

g(x) =

∫ ln(x)

0

e−t dt = −e−t
∣∣∣t=ln(x)

t=0
= −e− ln(x) + 1 = eln(x

−1) + 1 = − 1

x
+ 1.

Differentiating this, we see

g′(x) =
d

dx

(
− 1

x
+ 1
)

=
1

x2
.

Problem 3.6. (??) Let g(x) =
∫ 4x

−x2sin2(t) dt. Find g′(x).

Solution 3.6. We start by splitting the region of integration

g(x) =

∫ 4x

−x2

sin2(t) dt =

∫ 0

−x2

sin(t) dt+

∫ 4x

0

sin2(t) dt = −
∫ −x2

0

sin2(t) dt+

∫ 4x

0

sin2(t) dt.

By the fundamental theorem of calculus and the chain rule, we have

g′(x) = − d

dx

∫ −x2

0

sin2(t) dt+
d

dx

∫ 4x

0

sin2(t) dt linearity

= − sin2(−x2) · d
dx

(−x2) + sin2(4x) · d
dx

4x fundamental theorem & chain rule

= 2x sin2(−x2) + 4 sin2(4x).

The reasoning for the chain rule is the same as the previous problem.

3.2.3 Application of the Fundamental Theorem of Calculus Part 2

Problem 3.7. (?) Find the area under the curve of e−2x on the interval [0, 9].

Solution 3.7. If suffices to compute the following definite integral∫ 9

0

e−2x dx.

It is easy to check that F (x) = − 1
2e
−2x is an antiderivative of e−2x. Therefore, by the fundamental

theorem of calculus,∫ 9

0

e−2x dx = −1

2
e−2x

∣∣∣x=9

x=0
= −1

2
e−2·9 +

1

2
e−2·0 =

1

2
− 1

2
e−18.
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Remark: We can actually compute the area explicitly using Riemann sums. Recall that for r 6= 0,
the sum of a geometric series is given by

n−1∑
i=0

ri =
(1− rn

1− r

)
.

Using the left endpoint Riemann sum, we have

lim
n→∞

9

n
·
n∑
i=1

e−
18(i−1)

n
j=i−1

= lim
n→∞

9

n
·
n−1∑
j=0

(
e−

18
n

)j
= lim
n→∞

9

n
·
( 1− e−18

1− e− 18
n

)
=

1

2
− 1

2
e−18

using L’Hôpital’s rule.

Problem 3.8. (??) Compute the limit

lim
n→∞

3

n

(√
1 +

3

n
+

√
1 + 2 · 3

n
+

√
1 + 3 · 3

n
+ · · ·+

√
1 + n · 3

n

)
.

Solution 3.8. The summation appears to be a right Riemann sum. Recall that the right Riemann
sum is given by

lim
n→∞

n∑
i=1

f
(
a+ i ·∆x

)
·∆x = lim

n→∞

n∑
i=1

f
(
a+ i · b− a

n

)
· b− a

n
.

If we choose a = 1, b = 4 and f(x) =
√
x, then by the definition of the definite integral, we have∫ 4

1

√
x dx = lim

n→∞

n∑
i=1

√
1 + i∆x ·∆x = lim

n→∞

3

n

(√
1 +

3

n
+

√
1 + 2 · 3

n
+ · · ·+

√
1 + n · 3

n

)
.

Therefore, using the fundamental theorem of calculus, the infinite sum is equal to∫ 4

1

√
x dx =

2

3
x3/2

∣∣∣x=4

x=1
=

16

3
− 2

3
=

14

3
.

Remark. Notice that if we were to choose a = 0, b = 3 and f(x) =
√

1 + x, then we also have∫ 3

0

√
1 + x dx = lim

n→∞

n∑
i=1

√
1 + i∆x ·∆x = lim

n→∞

3

n

(√
1 +

3

n
+

√
1 + 2 · 3

n
+ · · ·+

√
1 + n · 3

n

)
.

Therefore, using the Fundamental theorem of calculus to compute this infinite sum, we have∫ 3

0

√
1 + x dx =

2

3
(1 + x)3/2

∣∣∣x=3

x=0
=

16

3
− 2

3
=

14

3
.

Once we learn integration by substitution, we will see why these two integrals are equal.

Remark. Yet another choice is picking a = 0 and b = 1. In this case, x∗i = 1
n and ∆x = 1

n , so

lim
n→∞

3

n

(√
1 +

3

n
+

√
1 + 2 · 3

n
+ · · ·+

√
1 + n · 3

n

)
=

n∑
i=1

3

√
1 + 3 · i

n
· 1

n
=

n∑
i=1

3
√

1 + 3x∗i ·∆x.

Therefore, using the Fundamental theorem of calculus to compute this integral, we have

n∑
i=1

3
√

1 + 3x∗i ·∆x =

∫ 1

0

3
√

1 + 3x dx =
2

3
(1 + 3x)3/2

∣∣∣x=1

x=0
=

16

3
− 2

3
=

14

3
.
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