
November 17, 2018 MAT186 – Week 6 Justin Ko

1 Applications of the Chain Rule

We go over several examples of applications of the chain rule to compute derivatives of more compli-
cated functions.

Chain Rule: If z = f(y) and y = g(x) then

d

dx
(f ◦ g)(x) =

( d
dx
f ◦ g

)
(x) · d

dx
g(x) = f ′(g(x)) · g′(x) or equivalently

dz

dx
=
dz

dy
· dy
dx
.

The chain rule is used as the main tool to solve the following classes for problems:

1. Implicit Differentiation: The chain rule can be used to compute derivatives of implicit functions

F (x, y(x)) = 0

where F is a function of two variables x and y.

2. Logarithmic Differentiation: By first taking the logarithm of both sides, we can compute deriva-
tives of

y(x) = f(x)g(x).

3. Inverse Functions Differentiation: The chain rule is used to derive the derivative of the inverse
function formula

d

dx
f−1(x) =

1

( d
dxf ◦ f−1)(x)

=
1

f ′(f−1(x))
.

4. Related Rates: There are word problems where both y and x depend on some related variable t.
The goal is to compute the rate of change of y(x) with respect to t.

1.1 Example Problems

1.1.1 Implicit Differentiation

Strategy: If y cannot be written explicitly as a function of x, then we can still compute the derivatives.

1. We differentiate both sides of the equation with respect to x and multiply a term by dy
dx whenever

the derivative ‘hits’ the y term.

2. After computing the derivative, we solve for dy
dx and leave our answer in terms of x and y.

3. We can evaluate the derivative at the point (x0, y(x0)) by plugging in the point x = x0 and
y = y(x0) into the derivative.

Problem 1. (?) Consider the implicit function

−2x+ 2ey = x2 + y2 + xy + 3.

Find the dy
dx when x = −1 and y = 0.

Solution 1. We differentiate both sides with respect to x,

d

dx
(−2x+ 2ey) =

d

dx
(x2 + y2 + xy + 3)

⇒ −2 + 2ey
dy

dx
= 2x+ 2y

dy

dx
+ y + x

dy

dx
Product Rule & Chain Rule

⇒ 2ey
dy

dx
− 2y

dy

dx
− xdy

dx
= 2x+ y + 2

⇒ dy

dx
=

2x+ y + 2

2ey − 2y − x
.
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Plugging in the point x = −1 and y = 0 into the formula above, we have

dy

dx

∣∣∣
x=−1,y=0

=
2x+ y + 2

2ey − 2y − x

∣∣∣
x=−1,y=0

= 0.

Problem 2. (??) Consider the implicit function

sin y + cosx = 1.

Find d2y
dx2 using implicit differentiation.

Solution 2. We differentiate both sides with respect to x,

d

dx

(
sin y + cosx

)
=

d

dx
1⇒ cos(y)

dy

dx
− sin(x) = 0⇒ dy

dx
= sin(x) sec(y).

Differentiating this again, we have

d2y

dx2
=

d

dx
sin(x) sec(y)⇒ d2y

dx2
= cos(x) sec(y) + sec(y) tan(y) sin(x)

dy

dx
Product Rule & Chain Rule

⇒ d2y

dx2
= cos(x) sec(y) + sin2(x) sec2(y) tan(y).

dy

dx
= sin(x) sec(y)

1.1.2 Logarithmic Differentiation

Strategy: We want to compute the derivatives of functions of the form

y(x) = f(x)g(x).

By taking the logarithm of both sides, we have

ln(y) = g(x) ln(f(x)).

This function can be differentiated implicitly using the same strategy as the last section. Taking the
logarithm of both sides of our equation can also be used to solve complicated quotient rule problems.

Remark: Logarithmic differentiation also works if y(x) < 0 for some values of x. To justify this,
we can take the absolute value of both sides, followed by the natural log of both sides, and use the
fact that

d

dx
ln |x| = 1

x
.

This can be proved using the fact that the derivative of an even function is odd, and using an odd
extension of d

dx lnx = 1
x to x < 0.

Problem 1. (?) Compute the derivative of

f(x) = xx.

Solution 1. We set y = f(x) and take the logarithm of both sides,

y = xx ⇒ ln(y) = x ln(x).

Implicitly differentiating both sides, we have

ln(y) = x ln(x)⇒ 1

y
· dy
dx

= ln(x) + 1 Product Rule and Chain Rule

⇒ dy

dx
= y(ln(x) + 1)

⇒ dy

dx
= xx(ln(x) + 1). y = xx
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Problem 2. (??) Let

f(x) =
2e
√
x2+1
√
x+ 4(x2 + 2x+ 2)

(x+ 1)5
.

Find f ′(0).

Solution 2. Suppose that x ≥ 0 and set y = f(x). We start by taking the logarithm of both sides,

y =
2e
√
x2+1
√
x+ 4(x2 + 2x+ 2)

(x+ 1)5
⇒ ln(y) = ln(2)+

√
x2 + 1+

1

2
ln(x+4)+ln(x2+2x+2)−5 ln(x+1).

Implicitly differentiating both sides, we have

ln(y) = ln(2) +
√
x2 + 1 +

1

2
ln(x+ 4) + ln(x2 + 2x+ 2)− 5 ln(x+ 1)

⇒ 1

y
· dy
dx

=
1

2
(x2 + 1)−

1
2 · 2x+

1

2

1

x+ 4
+

2x+ 2

x2 + 2x+ 2
− 5

1

x+ 1

⇒ dy

dx
= y ·

(1

2
(x2 + 1)−

1
2 · 2x+

1

2

1

x+ 4
+

2x+ 2

x2 + 2x+ 2
− 5

1

x+ 1

)
.

When x = 0, we have y = f(0) = 2e
√

x2+1√x+4(x2+2x+2)
(x+1)5

∣∣∣
x=0

= 8e we have

f ′(0) =
dy

dx

∣∣∣
x=0,y=8e

= 8e
(1

8
+ 1− 5

)
= −31e.

Remark: This problem can also be solved using the quotient rule. The computation is more cumber-
some if we use the quotient rule.

Problem 3. (? ? ?) Compute the derivative of

f(x) = x(x
x).

Solution 3. We set y = f(x) and take the logarithm of both sides,

y = x(x
x) ⇒ ln(y) = xx ln(x).

This derivative is still hard to compute explicitly, so we take the logarithm of both sides again,

ln(y) = xx ln(x)⇒ ln(ln(y)) = ln(xx ln(x)) = x lnx+ ln(ln(x)).

Implicitly differentiating both sides, we have

ln(ln(y)) = x lnx+ ln(ln(x))⇒ 1

ln(y)
· 1

y
· dy
dx

= ln(x) + 1 +
1

ln(x)
· 1

x
Product Rule and Chain Rule

⇒ dy

dx
= y ln(y)

(
ln(x) + 1 +

1

x ln(x)

)
⇒ dy

dx
= x(x

x)(xx ln(x))
(

ln(x) + 1 +
1

x ln(x)

)
y = x(x

x), ln(y) = xx ln(x)

⇒ dy

dx
= xx

x+1
(

ln2(x) + ln(x) +
1

x

)
.
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Problem 4. (? ? ?) Prove the quotient rule

d

dx

(f(x)

g(x)

)
=
g(x) d

dxf(x)− f(x) d
dxg(x)

(g(x))2
.

Solution 4. We will use logarithmic differentiation. Set y = f(x)
g(x) . Since y may be less than 0, we

first take the absolute value of both sides followed by the logarithm,

ln |y(x)| = ln |f(x)| − ln |g(x)|.

Implicitly differentiating both sides, we have

ln |y| = ln |f(x)| − ln |g(x)| ⇒ 1

y
· dy
dx

=
1

f(x)
f ′(x)− 1

g(x)
g′(x) Chain Rule

⇒ 1

y
· dy
dx

=
g(x)f ′(x)− f(x)g′(x)

f(x)g(x)

⇒ dy

dx
= y ·

(g(x)f ′(x)− f(x)g′(x)

f(x)g(x)

)
⇒ dy

dx
=
g(x)f ′(x)− f(x)g′(x)

(g(x))2
. y =

f(x)

g(x)

Note: The computations above work under the assumption that y(x) 6= 0.

1.1.3 Inverse Functions Differentiation

Problem 1. (??) Prove the formula for the derivative of the inverse function

d

dx
f−1(x) =

1

( d
dxf ◦ f−1)(x)

.

Solution 1. By the cancellation laws, we have

(f ◦ f−1)(x) = x.

Differentiating both sides and using the chain rule, we have

d

dx
(f ◦ f−1)(x) =

d

dx
x⇒

( d
dx
f ◦ f−1

)
(x) · d

dx
f−1(x) = 1⇒ d

dx
f−1(x) =

1

( d
dxf ◦ f−1)(x)

.

Problem 2. (??) Let f(x) = x+ sin(x). Find (f−1)′(0).

Solution 2. Notice that x+sin(x) is one-to-one on R, but its inverse is impossible to express in terms
of functions we have encountered so far. However, we can still find the derivative of the inverse using
the formula for the derivative of the inverse function.

Notice that f(0) = 0 + sin(0) = 0, so we have f−1(0) = 0. Since f ′(x) = 1 + cos(x), the formula
for the inverse derivative implies

(f−1)′(0) =
1

f ′(f−1(0))
=

1

f ′(0)
=

1

1 + cos(0)
=

1

2
.
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Problem 3. (??) Using the formula for the derivative of the inverse function, show that

d

dx
sin−1(x) =

1√
1− x2

.

Solution 3. We will use the formula

d

dx
f−1(x) =

1

( d
dxf ◦ f−1)(x)

with f(x) = sin(x). Since f−1(x) = sin−1(x) and d
dx sin(x) = cos(x), the formula implies

d

dx
sin−1(x) =

1

cos(sin−1(x))
.

We now want to simplify the function cos(sin−1(x)) without using trigonometric identities. This type
of problem was introduced in Week 1:

Geometric Solution: We first find the domain of our function. We have Dsin−1(x) = [−1, 1] and
Dcos(x) = R and D1/x = {x 6= 0}, so our domain consists of points in Dsin−1(x) such that

cos(sin−1(x)) 6= 0⇒ sin−1(x) 6= π

2
,−π

2
⇒ x 6= sin

(π
2

)
, sin

(
−π

2

)
⇒ x 6= ±1.

Therefore, the domain of our function is (−1, 1).

Case x ≥ 0: We first consider the case such that x > 0 on our domain. On this region, we have
θ = sin−1(x) ∈ [0, π2 ] (the first quadrant). The triangle corresponding to sin(θ) = x in the first
quadrant is given by

θ

1
x

√
1− x2

From this triangle, we see

1

cos(sin−1(x))
=

1

cos(θ)
=

1√
1− x2

for x ∈ [0, 1).

Case x < 0: We first consider the case such that x > 0 on our domain. On this region, we have
θ = sin−1(x) ∈ [−π2 , 0] (the fourth quadrant). The triangle corresponding to sin(θ) = x in the fourth
quadrant is given by

θ

1
x

√
1− x2
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Notice that x < 0, so the side opposite the θ is positive. From this triangle, we see

1

cos(sin−1(x))
=

1

cos(θ)
=

1√
1− x2

for x ∈ (−1, 0).

Combining the two domains, we have

d

dx
sin−1(x) =

1√
1− x2

for x ∈ (−1, 1).

Problem 4. (??) Using the formula for the derivative of the inverse function, show that

d

dx
sec−1(x) =

1

|x|
√
x2 − 1

.

Solution 4. We will use the formula

d

dx
f−1(x) =

1

( d
dxf ◦ f−1)(x)

with f(x) = sec(x). Since f−1(x) = sec−1(x) and d
dx sec(x) = sec(x) tan(x), the formula implies

d

dx
sec−1(x) =

1

sec(sec−1(x)) tan(sec−1(x))
.

We now want to simplify the function sec(sec−1(x)) tan(sec−1(x)) without using trigonometric identi-
ties. This type of problem was introduced in Week 1:

Geometric Solution: We first find the domain of our function. We have Dsec−1(x) = (−∞, 1]∪[1,∞),

Dtan(x) = {x 6= 2k+1
2 π}, and D1/x = {x 6= 0}. Notice that the range of sec−1(x) = [0, π, 2) ∪ (π/2, π]

so tan(sec−1(x)) is defined for all x ∈ Dsec−1(x). Since D1/x = {x 6= 0} and the domain of sec−1(x)
does not include 0, our function is defined for points in Dsec−1(x) such that

tan(sec−1(x)) 6= 0⇒ sec−1(x) 6= nπ ⇒ sec−1(x) 6= 0, π ⇒ x 6= sec(0), sec(π)⇒ x 6= −1, 1.

Therefore, the domain is of the function is (−∞,−1) ∪ (1,∞).

Case x > 0: We first consider the case such that x > 0 on our domain. On this region, we have
θ = sec−1(x) ∈ [0, π2 ] (the first quadrant). The triangle corresponding to sec(θ) = x in the first
quadrant is given by

θ

x √
x2 − 1

1

From this triangle, we see

1

sec(sec−1(x)) tan(sec−1(x))
=

1

sec(θ) tan(θ)
=

1

x
√
x2 − 1

for x ∈ (1,∞).

Case x < 0: We now consider the case such that x < 0 on our domain. On this region, we have
θ = sec−1(x) ∈ [π2 , π] (the second quadrant). The triangle corresponding to sec(θ) = x in the second
quadrant is given by
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θ

√
x2 − 1

−x

−1

From this triangle, we see

1

sec(sec−1(x)) tan(sec−1(x))
=

1

sec(θ) tan(θ)
=

−1

x
√
x2 − 1

for x ∈ (−∞,−1).

Combining the two domains, we have

d

dx
sec−1(x) =

1

|x|
√
x2 − 1

for x ∈ (−∞,−1) ∪ (1,∞).

1.1.4 Related Rates

Strategy: The goal is to find a function (or an implicit function) that connects the quantities we have
information about the rate of change. We then use the chain rule and differentiate both sides to find
the corresponding rates of change.

Problem 1. (??) A cylindrical tank with radius 5m is being filled with water at a rate of 3 m3/min.
How fast is the height of the water increasing?

Solution 1. We first summarize the information in the problem:

Given: Let V be the volume of the water in the tank. Since the tank is cylindrical with radius 5, we
know that V = π52h, where h is the height of the water level. We also know that dV

dt = 3.

Goal: We want to find dh
dt .

Finding the Equation: We now use the information given to solve the problem. We first find a
formula that relates V and h. Using the volume formula, we have

V = 25πh.

Solving for the Required Rate: To find dh
dt , we take the derivative of both sides with respect to t,

dV

dt
= 25π

dh

dt
⇒ dh

dt
=

1

25π

dV

dt
⇒ dh

dt
=

3

25π
,

since dV
dt = 3. Therefore, the height of the water is increasing at 3

25π m/min.

Problem 2. (??) Two cars start moving from the same point. One travels south at 60 km/h and the
other travels west at 25 km/h. At what rate is the distance between the cars increasing two hours
later?

Solution 2. We first summarize the information in the problem:

Given: Let x be the position of the car traveling west, and let y be the position of the car traveling
south, and let D be the distance the distance between the cars,
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D
y

x

We also know that dx
dt = 25 and dy

dt = 60.

Goal: We want to find dD
dt when t = 2.

Finding the Equation: We now use the information given to solve the problem. We first find a
formula that relates D with x and y. Using the pythagorean theorem, we have

D2 = x2 + y2.

Solving for the Required Rate: To find dD
dt , we take the derivative of both sides with respect to t,

d

dt
D2 =

d

dt
(x2 + y2)⇒ 2D

dD

dt
= 2x

dx

dt
+ 2y

dy

dt
⇒ dD

dt
= D−1

(
x
dx

dt
+ y

dy

dt

)
.

We want to compute this quantity when t = 2. When t = 2, we have x = 2 · 25 = 50 y = 2 · 60 = 120
and D =

√
x2 + y2 = 130. Furthermore, since dx

dt = 25 and dy
dt = 60, we have

dD

dt
=

1

130

(
50 · 25 + 120 · 60

)
= 65.

Therefore, the distance between the cars is increasing at 65km/h.

Problem 3. (??) The sides of an equilateral triangle are increasing at a rate of 10 cm/min. At what
rate is the area of the triangle increasing when the sides are 30 cm long.

Solution 3. We first summarize the information in the problem:

Given: Let x be the length of a side of the triangle. Half of the triangle is given by the triangle

x √
x2 − x2

4

x
2

We also know that dx
dt = 10.

Goal: Let A be the area of this triangle. We want to find dA
dt when x = 30.
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Finding the Equation: We now use the information given to solve the problem. We first find a
formula that relates A with x. Since the area of the a triangle is 1

2 × base× height, since x > 0

1

2
A =

1

2
· x

2
·
√
x2 − x2

4
⇒ A =

x2

2
·
√

3

2
.

Solving for the Required Rate: To find dA
dt , we take the derivative of both sides with respect to t,

dA

dt
=

d

dt

√
3x2

4
⇒ dA

dt
=

√
3x

2
· dx
dt
⇒ dA

dt
=

√
3 · 30

2
· 10 = 150

√
3,

since x = 30 and dx
dt = 10. Therefore, the area of the triangle is increasing at 150

√
3 cm2/min.
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