
November 18, 2018 MAT186 – Week 10 Justin Ko

1 Techniques of Integration

1.1 Integration By Substitution (Change of Variables)

We can think of integration by substitution as the counterpart of the chain rule for differentiation.
Suppose that g(x) is a differentiable function and f is continuous on the range of g. Integration by
substitution is given by the following formulas:

Indefinite Integral Version:∫
f(u) du =

∫
f(g(x))g′(x) dx where u = g(x).

Definite Integral Version:∫ g(b)

g(a)

f(u) du =

∫ b

a

f(g(x))g′(x) dx where u = g(x).

1.2 Integration By Parts

We can think of integration by substitution as the counterpart of the product rule for differentiation.
Suppose that u(x) and v(x) are continuously differentiable functions. Integration by parts is given by
the following formulas:

Indefinite Integral Version:∫
u(x)v′(x) dx = u(x)v(x)−

∫
u′(x)v(x) dx.

Definite Integral Version:∫ b

a

u(x)v′(x) dx = u(x)v(x)
∣∣∣x=b

x=a
−
∫ b

a

u′(x)v(x) dx.

1.3 Average Value of a Function

The average value of a function f on the interval [a, b] is given by

fave =
1

b− a

∫ b

a

f(x) dx.

We can interpret fave as the number such that half the area of the curve lies above it, and half the
area lies below it. In other words, fave is the number such that∫ b

a

(f(x)− fave) dx = 0.

Example: The average of f(x) = x2 and g(x) = x + 1 on the interval [−2, 2] is displayed below:

−2 −1 1

1

2

3

4

Figure 1: fave = 1
4

∫ 2

−2 x
2 dx = 4

3

−2 −1 1

−1

1

2

Figure 2: gave = 1
4

∫ 2

−2 x + 1 dx = 1

Page 1 of 12



November 18, 2018 MAT186 – Week 10 Justin Ko

1.4 More Properties of Integration

1. Integration of Odd Functions: If f(x) is odd, then∫ a

−a
f(x) dx = 0.

2. Integration of Even Functions: If f(x) is even, then∫ a

−a
f(x) dx = 2

∫ a

0

f(x) dx.

3. The following theorem says that a continuous function attains its average value:

Theorem 1 (The Mean Value Theorem for Integrals). If f is continuous on [a, b], then there
exists a number c ∈ [a, b] such that f(c) = fave. That is, there exists a c ∈ [a, b] such that∫ b

a

f(x) dx = f(c)(b− a).

4. We can “move” the average integral inside of a function that is concave up:

Theorem 2 (Jensen’s Inequality). If f(x) is a continuous function on [a, b] and g′′(x) ≥ 0 for
all x in the range of f , then g(fave) ≤ (g ◦ f)ave. That is,

g

(
1

b− a

∫ b

a

f(x) dx

)
≤ 1

b− a

∫ b

a

g(f(x)) dx.

1.5 Example Problems

1.5.1 Integration by Substitution

Strategy : The idea is to make the integral easier to compute by doing a change of variables.

1. Start by guessing what the appropriate change of variable u = g(x) should be. Usually you
choose u to be the function that is “inside” the function.

2. Differentiate both sides of u = g(x) to conclude du = g′(x)dx. If we have a definite integral, use
the fact that x = a→ u = g(a) and x = b→ u = g(b) to also change the bounds of integration.

3. Rewrite the integral by replacing all instances of x with the new variable and compute the integral
or definite integral.

4. If you computed the indefinite integral, then make sure to write your final answer back in terms
of the original variables.

Problem 1. (?) Find the following indefinite integral∫
tanh(x) dx =

∫
ex − e−x

ex + e−x
dx
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Solution 1.

Step 1: We will use the change of variables u = ex + e−x,

du

dx
= ex − e−x ⇒ du = (ex − e−x) dx.

Step 2: We can now evaluate the integral under this change of variables,∫
ex − e−x

ex + e−x
dx =

∫
du

u
= ln |u|+ C

= ln |ex + e−x|+ C. u = ex + e−x

Since ex + e−x > 0, we can remove the absolute values if we wish giving the final answer∫
tanh(x) dx = ln(ex + e−x) + C.

Remark: We can use the fact ex + e−x = 2 cosh(x) to conclude that

ln(ex + e−x) + C = ln(2 cosh(x)) + C = ln(cosh(x)) + ln(2) + C︸ ︷︷ ︸
D

= ln(cosh(x)) + D.

This form of the indefinite integral may be easier to remember since it mirrors the fact that∫
tan(x) dx = − ln | cos(x)|+ C.

Problem 2. (?) Evaluate the following integral∫ 1

0

x
√

1− x2 dx.

Solution 2.

Step 1: We will use the change of variables u = 1− x2,

du

dx
= −2x⇒ du = −2x dx⇒ −1

2
du = xdx, x = 0→ u = 1, x = 1→ u = 0.

Step 2: We can now evaluate the integral under this change of variables,∫ 1

0

x
√

1− x2 dx = −1

2

∫ 0

1

√
u du = −1

2
· 2

3
u

3
2

∣∣∣u=0

u=1
=

1

3
.

Remark: Instead of changing the bounds of integration, we can first find the indefinite integral,∫
x
√

1− x2 dx = −1

2
(1− x2)

3
2 ,

then use the fundamental theorem of calculus to conclude∫ 1

0

x
√

1− x2 dx = −1

2
(1− x2)

3
2

∣∣∣x=1

x=0
=

1

3
.
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Problem 3. (??) Find the following indefinite integral∫
1

1 +
√
x
dx.

Solution 3.

Step 1: We will use the change of variables u =
√
x. Then

du

dx
=

1

2
√
x
⇒ 2
√
xdu = dx⇒ 2u du = dx.

Step 2: We can now evaluate the integral under this change of variables,∫
1

1 +
√
x
dx =

∫
2u

1 + u
du.

This integral is a bit tricky to compute, so we have to use algebra to simplify it first. Using long
division to first simplify the integrand, we get∫

2u

1 + u
du = 2

∫
u

1 + u
du = 2

∫
1− 1

1 + u
du

= 2u− 2 ln |1 + u|+ C

= 2
√
x− 2 ln |1 +

√
x|+ C. u =

√
x.

Problem 4. (??) Find the following indefinite integral∫
sec(x) dx.

Solution 4. We first do a trick by multiplying the numerator and denominator by sec(x) + tan(x),∫
sec(x) dx =

∫
sec(x)(sec(x) + tan(x))

sec(x) + tan(x)
dx =

∫
sec2(x) + sec(x) tan(x)

sec(x) + tan(x)
dx.

Step 1: We will use the change of variables u = sec(x) + tan(x),

du

dx
= sec(x) tan(x) + sec2(x)⇒ du = (sec(x) tan(x) + sec2(x)) dx.

Step 2: We can now evaluate the integral under this change of variables,∫
sec(x) dx =

∫
sec2(x) + sec(x) tan(x))

sec(x) + tan(x)
dx =

∫
1

u
du

= ln |u|+ C

= ln | sec(x) + tan(x)|+ C. u = sec(x) + tan(x)

Problem 5. (??) Find the following indefinite integral∫
sech(x) dx =

∫
2

ex + e−x
dx.
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Solution 5.

Step 1: We will use the change of variables u = ex,

du

dx
= ex ⇒ dx =

1

ex
du⇒ dx =

1

u
du.

Step 2: We can now evaluate the integral under this change of variables,∫
sech(x) dx =

∫
2

ex + e−x
dx =

∫
2

u(u + u−1)
du

=

∫
2

u2 + 1
du

= 2 tan−1(u) + C

= 2 tan−1(ex) + C. u = ex

Alternative Solution: We first do a trick by multiplying the numerator and denominator by ex,∫
sech(x) dx =

∫
2

ex + e−x
dx =

∫
2ex

e2x + 1
dx.

Step 1: We will use the change of variables u = ex,

du

dx
= ex ⇒ du = ex dx.

Step 2: We can now evaluate the integral under this change of variables,∫
sech(x) dx =

∫
2ex

e2x + 1
dx =

∫
2

u2 + 1
du

= 2 tan−1(u) + C

= 2 tan−1(ex) + C. u = ex

1.5.2 Integration by Parts

We will introduce a method to bookkeep multiple integration by parts steps simultaneously. This is
called the tabular method for integration by parts. You pick a term to differentiate and a term to
integrate then repeat the operation until product of the terms in the last entry of the table is easy to
integrate.

The integral can be recovered by multiplying diagonally across the rows of the table adding up all
terms with alternating signs. The last term in the table is integrated across.

For example, the formula to integrate
∫
u(x)v′′′(x) dx by parts can be encoded by the table

± D I

+ u v′′′

− u′ v′′

+ u′′ v′

−
∫

u′′′ v

+

−

+

−
∫
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which gives us the formula∫
u(x)v′′′(x) dx = u(x)v′′(x)− u′(x)v′(x) + u′′(x)v(x)−

∫
u′′′(x)v(x) dx.

1.6 Examples

Problem 1. (?) Compute ∫
xex dx.

Solution 1.

Step 1: Draw the table

± D I

+ x ex

− 1 ex

+
∫

0 ex

Step 2: From the table, we have ∫
xex dx = xex − ex + C.

Problem 2. (??) Compute ∫
x6ex dx.

Solution 2.

Step 1: Draw the table

± D I

+ x6 ex

− 6x5 ex

+ 30x4 ex

− 120x3 ex

+ 360x2 ex

− 720x ex

+ 720 ex

−
∫

0 ex

Step 2: From the table, we have∫
x6ex dx = x6ex − 6x5ex + 30x4ex − 120x2ex − 720xex + 720ex + C.
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Problem 3. (??) Compute ∫
x4 sinx dx.

Solution 3.

Step 1: Draw the table

± D I

+ x4 sinx

− 4x3 − cosx

+ 12x2 − sinx

− 24x cosx

+ 24 sinx

−
∫

0 − cosx

Step 2: From the table, we have∫
x4 sinx dx = −x4 cosx + 4x3 sinx + 12x2 cosx− 24x sinx− 24 cosx + C.

Problem 4. (??) Compute ∫
ex sinx dx.

Solution 4.

Step 1: Draw the table

± D I

+ sinx ex

− cosx ex

+
∫
− sinx ex

Step 2: From the table, we have∫
ex sinx dx = ex sinx− ex cosx−

∫
ex sinx dx + D.

Moving all the
∫
ex sinx dx to one side and simplifying, we can conclude

2

∫
ex sinx dx = ex sinx− ex cosx + D =⇒

∫
ex sinx dx =

1

2
ex sinx− 1

2
ex cosx + C.

Problem 5. (? ? ?) Compute ∫
xex cos(x) dx.
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Solution 5.

Step 1: Draw the table

± D I

+ x cosx ex

− cosx− x sinx ex

+
∫
−2 sinx− x cosx ex

Step 2: From the table, we have∫
xex cosx dx = xex cosx− ex cosx + xex sinx− 2

∫
ex sinx dx−

∫
xex cosx dx.

Moving all the
∫
xex cosx dx to one side and simplifying, we can conclude

2

∫
xex cosx dx = xex cosx− ex cosx + xex sinx− 2

∫
ex sinx dx

= xex cosx− ex cosx + xex sinx− ex sinx + ex cosx + C. Problem 4

Dividing both sides by 2, we can conclude∫
xex cosx dx =

1

2

(
xex cosx + xex sinx− ex sinx

)
+ C.

Problem 6. (?) Compute ∫
ln(x) dx.

Solution 6.

Step 1: Draw the table

± D I

+ ln(x) 1

−
∫

1
x x

Step 2: From the table, we have∫
ln(x) dx = x ln(x)−

∫
1 dx = x ln(x)− x + C.

Problem 7. (??) Compute ∫ 2

1

x3 lnx dx.

Solution 7.

Step 1: Draw the table
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± D I

+ lnx x3

−
∫

1
x

1
4x

4

Step 2: From the table, we have∫
x3 lnx dx =

1

4
x4 lnx− 1

4

∫
x3 dx =

1

4
x4 lnx− 1

16
x4 + C.

Step 3: We can now use the fundamental theorem of calculus to compute the definite integral,∫ 2

1

x3 lnx dx =
1

4
x4 lnx− 1

16
x4
∣∣∣x=2

x=1
= 4 ln 2− 1 +

1

16
= 4 ln 2− 15

16
.

Problem 8. (? ? ?) Prove the reduction formula∫
sinn(x) dx = − 1

n
sinn−1(x) cos(x) +

n− 1

n

∫
sinn−2(x) dx.

Solution 8.

Step 1: Draw the table

± D I

+ sinn−1(x) sin(x)

−
∫

(n− 1) cos(x) sinn−2(x) − cos(x)

Step 2: From the table, we have∫
sinn(x) dx = − sinn−1(x) cos(x) + (n− 1)

∫
cos2(x) sinn−2(x)

= − sinn−1(x) cos(x) + (n− 1)

∫
(1− sin2(x)) sinn−2(x) sin2(x) + cos2(x) = 1

= − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x) dx− (n− 1)

∫
sinn(x) dx

Moving all the the
∫

sinn(x) dx terms to one side, we can conclude

n

∫
sinn(x) dx = − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x) dx

⇒
∫

sinn(x) dx = − 1

n
sinn−1(x) cos(x) +

n− 1

n

∫
sinn−2(x) dx.

1.6.1 Proofs of Properties of Integration

Problem 1. (? ? ?) Suppose that f(−x) = f(x). Prove that∫ a

−a
f(x) dx = 2

∫ a

0

f(x) dx.
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Solution 1. By the properties of definite integrals, we have∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx +

∫ a

0

f(x) dx = −
∫ −a
0

f(x) dx +

∫ a

0

f(x) dx.

Using the change of variables u = −x on the first integral, for even function f ,∫ −a
0

f(x) dx = −
∫ a

0

f(−u) du u = −x, du = −dx, x = 0→ u = 0, x = −a→ u = a

= −
∫ a

0

f(u) du f(−x) = f(x)

= −
∫ a

0

f(x) dx.

This computation implies∫ a

−a
f(x) dx = −

∫ −a
0

f(x) dx +

∫ a

0

f(x) dx =

∫ a

0

f(x) dx +

∫ a

0

f(x) dx = 2

∫ a

0

f(x) dx.

Problem 2. (? ? ?) Suppose that f(−x) = −f(x). Prove that∫ a

−a
f(x) dx = 0.

Solution 2. By the properties of definite integrals, we have∫ a

−a
f(x) dx =

∫ 0

−a
f(x) dx +

∫ a

0

f(x) dx = −
∫ −a
0

f(x) dx +

∫ a

0

f(x) dx.

Using the change of variables u = −x on the first integral, for odd functions f ,∫ −a
0

f(x) dx = −
∫ a

0

f(−u) du u = −x, du = −dx, x = 0→ u = 0, x = −a→ u = a

=

∫ a

0

f(u) du f(−x) = −f(x)

=

∫ a

0

f(x) dx.

This computation implies∫ a

−a
f(x) dx = −

∫ −a
0

f(x) dx +

∫ a

0

f(x) dx = −
∫ a

0

f(x) dx +

∫ a

0

f(x) dx = 0.

Problem 3. (? ? ?) Justify the technique used to solve separable ordinary differential equations:

dy

dx
= f(x)g(y) =⇒

∫
dy

g(y)
=

∫
f(x) dx⇒ G(y) = F (x) + C

where G(y) is an antiderivative of 1
g(y) and F (x) is an antiderivative of f(x).
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Solution 3. Using the notation y′(x) = dy
dx and writing y = y(x) explicitly as a function of x, we have

dy

dx
= f(x)g(y)⇒ y′(x)

g(y(x))
= f(x)⇒

∫
y′(x)

g(y(x))
dx =

∫
f(x) dx.

Using the change of variables u = y(x) on the first integral involving the y(x) term, we see∫
y′(x)

g(y(x))
dx =

∫
du

g(u)
=

∫
dy

g(y)
.

Therefore, using this change of variables, we can conclude that

dy

dx
= f(x)g(y) =⇒

∫
dy

g(y)
=

∫
f(x) dx.

This means there is a hidden change of variables that goes on when we formally separated dy
dx in the

second step of the technique.

Problem 4. (? ? ?) Vanishing Theorem: Suppose that f(x) is a continuous function on [a, b] such
that f(x) ≥ 0 for all [a, b] and ∫ b

a

f(x) dx = 0.

Prove that f(x) = 0 for all x ∈ [a, b].

Solution 4. On the contrary, suppose that f(x∗) > 0 for some point x∗ ∈ [a, b]. Then by continuity,
we must also have that f(x) > 0 on some interval [k, `] ⊂ [a, b]. By the mean value theorem of
integration, there exists a c ∈ [k, `] such that∫ `

k

f(x) dx = f(c)(`− k).

Since we also have that f(x) > 0 for all x ∈ [k, `], we must have f(c) > 0, which implies that∫ `

k

f(x) dx = f(c)(`− k) > 0.

Since f(x) ≥ 0, by the monotonicity of integration, the conclusion above implies∫ b

a

f(x) dx ≥
∫ `

k

f(x) dx > 0,

which contradicts the fact that
∫ b

a
f(x) dx = 0. Therefore, we must have that f(x) = 0 for all x ∈ [a, b].

Problem 5. (? ? ?) Prove the Mean Value Theorem for Integration by applying the Mean Value
Theorem to the function F (x) =

∫ x

a
f(t) dt.

Solution 5. By the fundamental theorem of calculus, F (x) is continuous on [a, b] and F (x) is differ-
entiable on (a, b). Therefore, by the mean value theorem there exists a c ∈ (a, b) such that

F (b)− F (a)

b− a
= F ′(c) = f(c).

Since F (b)− F (a) =
∫ b

a
f(x) dx−

∫ a

a
f(x) dx =

∫ b

a
f(x) dx, there exists a c ∈ (a, b) such that∫ b

a
f(x) dx

b− a
= f(c) =⇒

∫ b

a

f(x) dx = f(c)(b− a).
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Problem 6. (? ? ?) Jensen’s Inequality: Suppose that f(x) is a continuous function on [a, b] and
g′′(x) ≥ 0 for all x. Prove that

g

(
1

b− a

∫ b

a

f(x) dx

)
≤ 1

b− a

∫ b

a

g(f(x)) dx.

Solution 6. Let L(x) be the linear approximation of g at the point x = fave. Since g′′(x) ≥ 0, we
have g(x) lies above its tangent line so,

L(x) := g(fave) + g′(fave)(x− fave) ≤ g(x).

Since this holds for all x, we have L(f(x)) ≤ g(f(x)). Taking the average integral of both sides and
using the monotonicity of definite integrals, we can conclude

g(fave) =
1

b− a

∫ b

a

g(fave) + g′(fave)(f(x)− fave) dx ≤
1

b− a

∫ b

a

g(f(x)) dx.

Remark: We only require g′′(x) ≥ 0 on the range of f for the inequality to hold. This is because
fave is in the range of f by the mean value theorem of integration, and g is only evaluated at points
in the range of f . If g′′(x) > 0, then the same proof shows g(fave) < (g ◦ f)ave provided that f is not
a constant function.

Remark: It is easy to see that the opposite inequality holds if g′′(x) ≤ 0. Suppose that g′′(x) ≤ 0,
then −g′′(x) ≥ 0, so Jensen’s inequality implies that

−g(fave) ≤ (−g ◦ f)ave =⇒ g(fave) ≥ (g ◦ f)ave.
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