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1 Continuous-time Markov chains

We fix a probability space (Ω,F ,P). Let {X(t)}t≥0 be a stochastic process taking values in a state
space S and

Ft = FX
t = σ(X(s) : 0 ≤ s ≤ t)

be its natural filtration.

Definition 1.1. {X(t)}t≥0 is called a continuous-time Markov chain (CTMC) if

(1) the state space S is at most countable.

(2) The process satisfies the Markov property: for s, t ≥ 0 and i ∈ S,

P(X(t+ s) = i | Ft) = P(X(t+ s) = i |X(t))

To mirror the notion of the Markov property for DTMC, we see that Condition (2) is equivalent to

(2’) for any s, t ≥ 0, n ∈ N, 0 ≤ r0 < · · · < rn ≤ t, and i, j, x0, . . . , xn ∈ S,

P (X(t+ s) = j|X(t) = i,X(rn) = xn, . . . , X(r0) = x0) = P (X(t+ s) = j|X(t) = i) .

Remark 1.2. The Poisson process is a CTMC. More generally, every continuous-time process that has
independent increments and takes values in Z is a CTMC. However, recall that the Markov property
does not necessarily imply independent increments (See Problem 1.1)

As in the case of a DTMC, from now on, we only consider homogeneous CTMCs unless otherwise
stated. This homogeneous assumption is needed to state any results about the long time behavior of
a Markov chain.

Definition 1.3. A CTMC is called (time-)homogeneous if, for any s, t ≥ 0 and i, j ∈ S,

P (X(t+ s) = j|X(t) = i) = P (X(s) = j|X(0) = i) .

Example 1.4. The non-homogeneous Poisson process is a non-homogeneous CTMC. On the other
hand, the (homogeneous) Poisson process becomes a homogeneous CTMC, if we define a Poisson
process with start in i ∈ {0, 1, . . . } as

Ñ(t) := i+N(t),

where N(t) is a Poisson process with start in N(0) = 0.

The key difference between a CTMC and a DTMC is that in discrete time, the Markov chain moves
to a new state at times t = 1, 2, 3, ... while in a CTMC, the Markov chain can move to a new state at
any t ≥ 0. Just like for the Poisson process, the times of the jumps are the arrival times.

1.1 The transition semigroup of a CTMC

We define the analogue of the transition matrix for DTMC, which will encode all the information
needed to generate the entire CTMC.

Definition 1.5. The transition probabilities of a homogeneous CTMC are defined as

pij(t) = P (X(t) = j|X(0) = i) = P (X(t+ s) = j|X(s) = i) .

The transition semigroup is defined as

P (t) = (pij(t))i,j∈S , t ≥ 0,

with P (0) = I, the identity matrix. We assume from now on that

P (h) −→ P (0) = I,

that is, pij(h) → δij as h ↓ 0.
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Just like for the transition matrix, for each t ≥ 0, the matrix P (t) = (pij(t))i,j∈S satisfies{
pij(t) ≥ 0, for all i, j ∈ S,∑

j∈S pij(t) = 1, for all i ∈ S.

The following result explains the term “semigroup”.

Theorem 1.6 (Chapman–Kolmogorov equations)

For s, t ≥ 0,
P (t+ s) = P (t)P (s) = P (s)P (t).

The transition mechanism of a CTMC has two components:

1. The time spent at a given state i before leaving it.

2. The jump mechanism by which the next state is chosen.

Knowing the answers to these questions gives us a procedure to simulate a CTMC on a computer,
first by generating the time the CTMC jumps to the next state, then generating the state the CTMC
jumps to. We will see in the following sections that both of this information is determined completely
by the transition semigroup.

1.2 The sojourn times of a CTMC

We begin by defining a notion of how long a CTMC stays at a state before leaving it.

Definition 1.7. Given that X(0) = i, the sojourn time of the CTMC at state i is the random time
Ui defined as

Ui = inf {t ≥ 0 : X(t) ̸= i} .

The sojourn time for the Poisson process is exponential. We will see that this holds more generally.

Remark 1.8. Note that Ui > 0 can only happen if X(0) = i. Therefore, we will consider Ui only
under the probability measure P( · |X(0) = i).

Proposition 1.9

Under P( · |X(0) = i), the sojourn time Ui has an exponential distribution with rates αi that can
depend on the state i.

This result says that the time to leave a state is an exponential random variable. The natural
question is what is the value of the parameter in the exponential distribution of Ui? We will answer
these questions in the next sections, but we start by giving some brief motivation about how this
information can be encoded by the transition semigroup.

We will see how the small time behavior of a CTMC is the key to this information. Notice that if
Ui is exponential with rate αi, then it satisfies

P(Ui > △t) = e−αi△t = 1− αi△t+
1

2
(αi△t)2 − 1

3!
(αi△t)3 + · · ·

= 1− αi△t+ o(△t)

where the error term o(△t) is much smaller than △t for △t small,

lim
△t→0

o(△t)

△t
= 0.
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That is,

P(no jumps occurred by time △t) = 1− αi△t+ o(△t).

Rearranging this equation, and using the fact that pii(△t) gives the result on the left hand side and
pii(0) = 1 implies that

−αi = lim
△t→0

pii(△t)− pii(0)

△t
= p′ii(0).

Therefore, the derivatives or rates of change of the transition semigroup contains the relevant infor-
mation about the rates of the exponential distribution in the sojourn times.

Remark 1.10. Furthermore, by taking complements of the set {no transition occurred by time △t}
we see that

P(one jump occurred by time △t) = αi△t+ o(△t),

P(at least two jumps occurred by time △t) = o(△t).

The first implies that the rates of jumps αi is proportional to the time interval. The second also
removes the probability that two jumps happen simultaneously. Both of these facts mirror the Poisson
process.

1.2.1 Infinitesimal generator matrix

We answer the first question in Section 1.1, namely what is the rate of the exponential clock that
determines when the CTMC leaves its current state. From now on, we assume that

t 7−→ pij(t) is differentiable at t = 0 for all i, j ∈ S.

This allows us to define a matrix that encodes the instantaneous rate at which a Markov chain tran-
sitions between states.

Definition 1.11. The matrix Q := (qij)i,j∈S with entries

qij =
d

dt
pij(t)

∣∣∣∣
t=0

= lim
h↓0

pij(h)− δij
h

= p′ij(0). (1)

is called the infinitesimal generator of the CTMC.

Remark 1.12. In matrix form, the matrix Q can be written as

Q := (qij)i,j∈S =
d

dt
P (t)

∣∣∣∣
t=0

= lim
h↓0

P (h)− I

h
= P ′(0).

since P (0) = I the identity matrix.

By rearranging the definition of Q, we see that for h = △t, we have that for i ̸= j

pij(△t) = (△t)× qij

so the probability that the chain moves from i to j in a short time is proportional to its rate qij . The
values Q-matrix will encode the rates at which the Markov chain move from i to j. This is made
precise with the following result.
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Proposition 1.13

1. The diagonal elements of Q are

qii = −αi, i ∈ S,

where αi is the parameter of the exponential distribution of the sojourn time at state i.

2. The off-diagonal elements of Q satisfy

qij ≥ 0 for i ̸= j,

and ∑
j ̸=i

qij = αi for all i ∈ S.

This proposition allows us to read the parameters of the exponential distributions fo the sojourn times
from the diagonal elements of the Q-matrix.

1.3 Embedded DTMC

We answer the second question in Section 1.1, namely when the CTMC leaves its current state, what
is the probability it goes to each state. One might expect that this information will be encoded by a
DTMC.

Definition 1.14. Consider the transition matrix P̃ := (p̃ij)i,j∈S with entries

p̃ij :=


qij
−qii

if i ̸= j,

0 if i = j.

The DTMC with transition matrix P̃ is called the embedded DTMC of the CTMC.

Remark 1.15. The second part of Proposition 1.13 implies that

p̃ij ≥ 0 for i ̸= j,∑
j

p̃ij = 1 for all i ∈ S,

so P̃ is a stochastic matrix, and therefore a valid transition matrix.

To see why P̃ is the transition matrix of a DTMC, we can simply define Xn = X(Tn), where Tn

denotes the time of the nth jump, to be the location of the DTMC at the time nth jump. Since the
Markov chain is homogeneous, we will see in the following result that the values p̃ij is the probability
that the Markov chain jumps to state j given that it started at state i and a jump just occurred.

Proposition 1.16

For i ̸= j, we have
P(X(Ui) = j|X(0) = i) = p̃ij , j ̸= i.

The intuition of the above description of the CTMC is that X(t) stays at a state i for a random
time period Ui with distribution Exp(αi) and after that moves on to the next state j, which is chosen

according to the transition matrix P̃ .
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1.4 The forward and backward Kolmogorov equations

We have seen that the Q matrix is easily computable given P and the Q matrix encodes all the
information needed to generate the CTMC. In this section, we will see that the P matrix can also be
computed from the Q matrix.

Proposition 1.17

The time derivative P ′(t) of the transition semigroup satisfies the following two equations, where
Q is the infinitesimal generator of the CTMC.

� Kolmogorov backward equation

P ′(t) = QP (t) (2)

� Kolmogorov forward equation

P ′(t) = P (t)Q (3)

These equations give a statement about the rate of change in P in terms of itself. These equations
remind us of the growth equations in ODEs, which states that

f ′(t) = kf(t) =⇒ f(t) = f(0)ekt.

A similar result holds for matrices.

Theorem 1.18

Under some technical conditions to ensure that the terms below are well defined, the Kolmogorov
forward and backward equations have the following solution, subject to the initial condition P (0) =
I,

P (t) = etQ.

Where, eM is the matrix exponential of the square matrix M , defined by

eM =

∞∑
n=0

1

n!
Mn.

Even when the state space is finite, i.e., S = {0, 1, 2, . . . , N}, the matrix exponential P (t) = etQ is
still not easy to calculate unless Q is diagonalizable, that is, there exists an invertible matrix A such
that

Q = ADA−1,

where

D =


d0

d1
. . .

dN

 .

In this case,
Q2 = (ADA−1)2 = ADA−1ADA−1 = ADIDA−1 = AD2A−1

and, in the same way,
Qk = (ADA−1)k = ADkA−1.
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Since Dk is also a diagonal matrix, we have

P (t) = etQ =

∞∑
n=0

tnQn

n!
=

∞∑
n=0

tn
(
ADA−1

)n
n!

=

∞∑
n=0

tnADnA−1

n!
= A

( ∞∑
n=0

tnDn

n!

)
A−1 = AetDA−1,

where

etD =


etd0

etd1

. . .

etdN

 .

1.5 Example Problems

1.5.1 Proofs of Results

Problem 1.1. Give an example of stochastic process that satisfies the Markov property, but does not
have independent increments.

Solution 1.1. We first provide a discrete time example. Let (ξn)n≥1 be independent Rademacher
random variables,

P(ξ = ±1) =
1

2
.

Notice that (ξn)n≥0 is Markov because

P(ξn = xn | ξn−1 = xn−1, . . . , ξ0 = x0) = P(ξn = xn) = P(ξn = xn | ξn−1 = xn−1)

but clearly the increments Xn = ξn− ξn−1 and Xn−1 = ξn−1− ξn−2 are not independent because they
depend on the same random variables. A continuous time version of this example can be constructed
by consider the same process (ξt)t≥0 but indexed by time.

Problem 1.2. Prove the Chapman–Kolmogorov Equations.

Solution 1.2. The proof is identical to the discrete case. By Markov property and homogeneity, we
have by the chain rule for conditional probabilities

pij(t+ s) = P (X(t+ s) = j|X(0) = i)

=
∑
k∈S

P (X(t+ s) = j|X(t) = k,X(0) = i)P (X(t) = k|X(0) = i)

=
∑
k∈S

P (X(t+ s) = j|X(t) = k)P (X(t) = k|X(0) = i)

=
∑
k∈S

P (X(s) = j|X(0) = k)P (X(t) = k|X(0) = i)

=
∑
k∈S

pik(t)pkj(s).

Writing this identity in matrix notation finishes the proof.

Problem 1.3. Prove Proposition 1.9.
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Solution 1.3. Recall that a random variable is memoryless if

P(X > t+ s |X > s) = P(X > t)

which roughly says that previous elapsed time does not affect the future waiting time. The exponential
distribution is the only continuous distribution with the memoryless property.

At an intuitive level, the memoryless property seems to share many connections with the Markov
property in the sense that past information has a weak effect. We make this precise by considering
the conditional probability

P (Ui > t+ s|Ui > s, X(0) = i) = P (X(u) = i for u ∈ [0, t+ s]|X(u) = i for u ∈ [0, s])

= P (X(u) = i for u ∈ (s, t+ s]|X(u) = i for u ∈ [0, s])

= P (X(u) = i for u ∈ (s, t+ s]|X(s) = i) , Markov property

= P (X(u) = i for u ∈ (0, t]|X(0) = i) , homogeneous

= P (Ui > t|X(0) = i) , definition

Therefore, the distribution of the sojourn time Ui ismemoryless. Since the exponential distribution is
the only continuous distribution with the memoryless property, Ui follows an exponential distribution
with some parameter αi.

Problem 1.4. Prove Proposition 1.13.

Solution 1.4. This proof formalizes the computations at the end of Section 1.1.

Part 1: We have as h ↓ 0, the law of total probability implies that

pii(h) = P (X(h) = i|X(0) = i) = P (Ui > h|X(0) = i) + P (X(h) = i, Ui < h|X(0) = i) .

Notice that

P (X(h) = i, Ui < h|X(0) = i) ≤ P (at least two transitions occurred by time h)

= o(h).

Therefore,

pii(h) = P (Ui > h|X(0) = i) + o(h) = e−αih + o(h)

which implies

qii = lim
h↓0

pii(h)− δii
h

= lim
h↓0

e−αih + o(h)− 1

h
= −αi.

Part 2: For i ̸= j, we have

qij = lim
h↓0

pij(h)− 0

h

Since pij(h)/h ≥ 0 for all h > 0, so must be qij . Next, we have∑
j ̸=i

pij(h) = 1− pii(h),

and therefore ∑
j ̸=i

qij = −p′ii(0) = αi.

(The preceding argument is correct if S is finite and needs some additional care if S is infinite, because
then the interchange of limit and an infinite sum needs extra justification).
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Problem 1.5. Prove Proposition 1.16

Solution 1.5. For i ̸= j, we define

rij(△t) = P(X(t+△t) = j |X(t) = i,X(t+△t) ̸= i) = P(X(h) = j |X(0) = i,X(△t) ̸= i)

by time homogeneity. When △t is very small, there will only be one transition with very high proba-
bility, so it roughly represents the probability that the chain jumps to state j from state i given that
there is a transition at time △t. We have

P(X(Ui) = j|X(0) = i) = lim
△t→0

Rij(△t).

By the definition of conditional probability,

rij(△t) =
P(X(△t) = j |X(0) = i)

P(X(△t) ̸= i |X(0) = i)
=

pij(△t)

1− pii(△t)
=

pij(△t)−0
△t

−pii(△t)−1(△t)
△t

so taking △t → 0 implies that

lim
△t→0

Rij(△t) =
p′ij(0)

−p′ii(0)
=

qij
−qii

,

by the definition of the Q-matrix.

Problem 1.6. Prove the forward and backward equations in Proposition 1.17.

Solution 1.6.

Forward Equations: The Chapman-Kolmogorov equation implies

P (t+ h)− P (t) = P (h)P (t)− P (t) = (P (h)− I)P (t) = (P (h)− P (0))P (t).

Thus,

P ′(t) = lim
h↓0

P (t+ h)− P (t)

h
= lim

h↓0

P (h)− P (0)

h
P (t) = QP (t).

Backward Equations: Similarly, since

P (t+ h)− P (t) = P (t) (P (h)− P (0)) ,

we have

P ′(t) = lim
h↓0

P (t+ h)− P (t)

h
= lim

h↓0
P (t)

P (h)− P (0)

h

= P (t) lim
h↓0

P (h)− P (0)

h
(4)

= P (t)Q.

Remark 1.19. If the state space S is infinite, the step (4) interchanges limit and infinite sum, which
requires additional assumptions. For a finite state space S, this is always okay. No such interchange
is needed for the derivation of (2).
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Problem 1.7. Prove the matrix exponential satisfies the Kolmogorov equations as in Theorem 1.18

Solution 1.7. We first have e0·Q = Q0 = I = P (0). Next, assuming enough conditions on P so that
we may interchange differentiation and summation,

P ′(t) =
d

dt
et·Q =

d

dt

∞∑
n=0

tn

n!
Qn =

∞∑
n=0

d

dt

tn

n!
Qn =

∞∑
n=1

tn−1

(n− 1)!
Qn

= Q

( ∞∑
n=1

tn−1

(n− 1)!
Qn−1

)
= Q

( ∞∑
m=0

tm

m!
Qm

)
= QP (t)

=

( ∞∑
n=1

tn−1

(n− 1)!
Qn−1

)
Q =

( ∞∑
m=0

tm

m!
Qm

)
Q = P (t)Q.

Note that we use the fact Qn = QQn−1 = Qn−1Q above.

1.5.2 Applications

Problem 1.8. What is the transition semigroup of a Poisson process with intensity λ > 0?

Solution 1.8. Recall that a Poisson process with intensity λ > 0 satisfies

P (N(t+ h)−N(t) = n) = e−λh (λh)
n

n!
, n = 0, 1, 2, . . .

Therefore,

pij(t) = P(N(t) = j |N(0) = i) =

{
e−λh (λh)j−i

(j−i)! j ≥ i

0 j < i.

Problem 1.9. Find the infinitesimal generator of a Poisson process with intensity λ.

Solution 1.9. For the Poisson process with intensity λ > 0, we have

pij(t) =

{
e−λt (λt)

j−i

(j−i)! if j ≥ i,

0 otherwise.

Hence, for j = i,
d

dt
pii(t)

∣∣∣∣
t=0

=
d

dt
e−λt

∣∣∣∣
t=0

= −λ,

for j = i+ 1,
d

dt
pi,i+1(t)

∣∣∣∣
t=0

=
d

dt
e−λtλt

∣∣∣∣
t=0

= λ,

and for j ≥ i+ 2,
d

dt
pij(t)

∣∣∣∣
t=0

=
d

dt
e−λt (λt)

j−i

(j − i)!

∣∣∣∣
t=0

= 0

Therefore, condition (1) holds and the matrix (qij)i,j=0,1,... looks like this:

Q =



−λ λ 0 0 · · ·
0 −λ λ 0 · · ·

0 0 −λ λ
. . .

0 0 0 −λ
. . .

...
...

...
. . .

. . .


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Problem 1.10. Find the transition matrix of the embedded DTMC associated with the Poisson
process with intensity λ.

Solution 1.10. The entries can be computed using the formula and the formula for the Q-matrix in
Problem 1.9

p̃n,n+1 =
qn,n+1

−qnn
=

λ

−(−λ)
= 1.

Since the sums along the rows must be 1, we have that all other entries are zero (which can be seen
by also applying the formulas for to the other entries).

Remark 1.20. This is a very intuitive result. For instance, if T1, T2, . . . , are the arrival times, then
we define Xn = X(Tn), then we have that

p̃n,n+1 = 1

and p̃n,j = 0 for all j ̸= n + 1, since we know that the Poisson process increases by 1 at each arrival
time. The matrix is given below

P̃ =



0 1 0 0 · · ·
0 0 1 0 · · ·

0 0 0 1
. . .

0 0 0 0
. . .

...
...

...
. . .

. . .


Problem 1.11. Consider a CTMC with state space {0, 1} and generator

Q =

(
−α α
β −β

)
.

What is probability transition matrix P (t) corresponding to Q?

Solution 1.11. For this CTMC, the probability transition matrix P (t) can be obtained explicitly.
By the Kolmogorov backward equation P ′(t) = QP (t), we have{

p′00(t) = −αp00(t) + αp10(t)
p′10(t) = βp00(t)− βp10(t)

(5)

It suffices to compute these entries because p01 = 1−p00 and p11 = 1−p10. This is a system of coupled
ordinary differential equations (ODEs). Multiplying the first equation by β, the second equation by
α, and adding these two equations, we obtain

βp′00(t) + αp′10(t) = 0.

Integrating this equation with the initial conditions p00(0) = 1 and p10(0) = 0, we have

βp00(t) = β − αp10(t). (6)

Substituting this into the second equation of (5) yields an ODE for p10,

p′10(t) = −(α+ β)p10(t) + β.

Multiplying both sides of the equation with e(α+β)t yields(
e(α+β)tp10(t)

)′
= βe(α+β)t.
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Using the boundary condition p10(0) = 0 again, we have

p10(t) = e−(α+β)t

∫ t

0

βe(α+β)sds =
β

α+ β
− β

α+ β
e−(α+β)t.

Further, from (6),

p00(t) =
β

α+ β
+

α

α+ β
e−(α+β)t.

Finally, we note that

p01(t) = 1− p00(t) = 1− β

α+ β
− α

α+ β
e−(α+β)t =

α

α+ β
− α

α+ β
e−(α+β)t

and

p11(t) = 1− p10(t) = 1− β

α+ β
+

β

α+ β
e−(α+β)t =

α

α+ β
+

β

α+ β
e−(α+β)t.

In summary,

P (t) =

(
β

α+β + α
α+β e

−(α+β)t α
α+β − α

α+β e
−(α+β)t

β
α+β − β

α+β e
−(α+β)t α

α+β + β
α+β e

−(α+β)t

)
.
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