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1 Poisson processes

1.1 Basic Definitions

We now consider stochastic processes in continuous time. By definition, this is a collection {X(t)}t≥0

of random variables X(t) on some given probability space (Ω,F ,P). We begin by reviewing the Poisson
process.

The Poisson process satisfies two key properties.

Definition 1.1.

(1) A stochastic process {X(t)}t≥0 is said to has independent increments if, for any 0 ≤ t0 <
t1 < · · · < tn, the increments

X(t1)−X(t0), X(t2)−X(t1), . . . , X(tn)−X(tn−1)

are all independent.

(2) A stochastic process {X(t)}t≥0 is said to has stationary increments, if for any t ≥ 0 and
h > 0, the increment X(t+ h)−X(t) has the same distribution (or law) as X(h)−X(0).

Remark 1.2. These conditions seem similar to the Markov property and time homogeneous, but
they are different concepts. There are examples of processes with stationary increments that are not
homogeneous and vice versa. Furthermore, one can show that independent increments implies the
Markov property, but the converse is not true. This will be elaborated when we introduce continuous
time Markov chains in the next section.

When the stochastic processes represents the counts of the occurrence of events, we call it a counting
process.

Definition 1.3. A stochastic process {N(t)}t≥0 is called a counting process if

(1) N(t) takes values in {0, 1, 2, . . .}.

(2) N(t) ≥ N(s) if t ≥ s.

The Poisson process is a special counting process with independent and stationary increments given
in terms of a Poisson distribution. It is used to model random events that happen at a consistent rate.

Definition 1.4. A stochastic process {N(t)}t≥0 is called a Poisson process with intensity λ > 0 if

(1) N(0) = 0.

(2) It has independent increments.

(3) For any t ≥ 0 and h > 0, the increment N(t+h)−N(t) has a Poisson distribution with parameter
λh, i.e.,

P (N(t+ h)−N(t) = n) = e−λh (λh)
n

n!
, n = 0, 1, 2, . . .

Remark 1.5. Note that the stationarity of the increments follows from (3). Moreover, a Poisson
process must necessarily be a counting process, because (3) and (1) imply that N(t) = N(t) − N(0)
takes values in the nonnegative integers and (3) also implies that N(t+ h)−N(t) ≥ 0 for all t and h.
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1.2 Properties of the Poisson process

Let {Tn}n=0,1,2,... be the arrival times of a Poisson process with

T0 = 0 and Tn = min {t ≥ 0 : N(t) = n} .

The interarrival times or waiting times are defined as {τn}n=1,2,... by

τn := Tn − Tn−1, n = 1, 2, , ...

Remark 1.6. Conversely, the interarrival times completely encode the distribution of a counting
process. That is, given a sequence {τ̃n}n=1,2,... of random variables, we can define

T̃n = τ̃1 + · · ·+ τ̃n, n = 1, 2, . . .

Ñt = max{n : T̃n ≤ t}.
(1)

Then {Ñ(t)}t≥0 is counting process. In particular, there is a one-to-one correspondence between a
counting process and its interarrival times.

We are interested in the joint distribution of interarrival times {τn}n=1,2,... and arrival times
{Tn}n=0,1,2,... for a Poisson process. The next result implies that the waiting times are exponential
with rate λ.
Theorem 1.7

Let {N(t)}t≥0 be a Poisson process with intensity λ. Then the interarrival times {τn}n=1,2,... form
an i.i.d. sequence of exponential random variables with parameter λ.

Conversely, for a given i.i.d. sequence {τ̃n}n=1,2,... of exponential random variables with param-

eter λ, the {Ñ(t)}t≥0 defined in (1) is a Poisson process with intensity λ. let T̃0 = 0 and

T̃n = τ̃1 + · · ·+ τ̃n, n = 1, 2, . . .

Ñt = max{n : T̃n ≤ t}.
(2)

Then {Ñ(t)}t≥0 is a Poisson process with intensity λ.

Remark 1.8. Theorem 1.7 implies that

P(τn = 0 for some n) = 0.

Therefore, with probability one, a Poisson process jumps only one step at a time.

Remark 1.9. The second part of Theorem 1.7 provides a method for simulating a Poisson process on
a computer: Simulate an i.i.d. sequence {τ̃n}n=1,2,... of exponential random variables with parameter
λ, and then define the corresponding counting process via (2).

Next we discuss result that allow us to combine and split Poisson processes. The first result allows
us to combine the two independent Poisson processes.

Proposition 1.10 (Superposition Theorem)

Let {N1(t)}t≥0 and {N2(t)}t≥0 be two independent Poisson processes with intensity λ1 and λ2,
respectively. Then N1(t) +N2(t) is also a Poisson process with intensity λ1 + λ2.

Remark 1.11. The independence is a crucial condition. For example, if we consider N1(t) = N2(t),
which are not independent, then N(t) = N1(t) +N2(t) = 2N1(t) is not a Poisson process because this
process jumps twice every step.

The next result allows us to decompose two independent Poisson processes.

Page 2 of 11



February 27, 2025 ACTSC 624 – Week 7 Justin Ko

Proposition 1.12 (Splitting Theorem)

Let {N(t)}t≥0 be a Poisson process with intensity λ. Suppose that at each arrival time, we mark it
with “1” with probability p and with “2” with probability 1−p. Let {N1(t)}t≥0 and {N2(t)}t≥0 be
the counting processes of the points with mark “1” and mark “2”, respectively. Then {N1(t)}t≥0

and {N2(t)} are two independent Poisson processes with intensity pλ and (1− p)λ, respectively.

Example 1.13. Suppose an insurance company issues two different types of insurance policies. If
claims for the ith policy arrive according to a Poisson process with intensity λi, then the combined
claims process is a Poisson process with intensity λ1 + λ2. Conversely, splitting the combined claims
process as in Proposition 1.12 yields two Poisson processes.

1.3 Nonhomogeneous Poisson process and compound Poisson process

We introduce two extensions of the Poisson process: non-homogeneous Poisson processes and com-
pound Poisson processes. The non-homogeneous Poisson process allows for rates λ(t) that are not
constant. The corresponding rate the Poisson process will be proportional to the length of the interval
times the average rate along that interval.

Definition 1.14. Let λ(t) be a positive and deterministic function of t ≥ 0. A stochastic process
{N(t)}t≥0 is called a non-homogeneous Poisson process with intensity function λ(t), t ≥ 0 if

(1) N(0) = 0.
(2) It has independent increments.
(3) For any t ≥ 0 and h > 0, the increment N(t + h) − N(t) follows a Poisson distribution with

parameter

h

(
−
∫ t+h

t

λ(u) du

)
= h

(
1

h

∫ t+h

t

λ(u) du

)
=

∫ t+h

t

λ(u) du,

that is,

P (N(t+ h)−N(t) = n) = e−
∫ t+h
t

λ(u)du

(∫ t+h

t
λ(u)du

)n
n!

, n = 0, 1, 2, . . .

Definition 1.15. A stochastic process {X(t)}t≥0 is called a compound Poisson process if it can
be represented as

X(t) =

N(t)∑
i=1

Yi, t ≥ 0,

where {N(t)}t≥0 is a Poisson process and {Yi}i≥1 is a sequence of i.i.d. random variables which are
also independent of {N(t)}t≥0.

Example 1.16. The example of the Poisson process 2N(t) in Remark 1.11 is an example of a com-
pound Poisson process. Indeed, we have

2N(t) =

N(t)∑
i=1

2

so it is a compound Poisson process where Yi = 2 for all i.

Proposition 1.17

Consider a compound Poisson process defined above. We have

E [X(t)] = E [Y1]E[N(t)] = λtE [Y1]

Var [X(t)] = Var(Y1)E[N(t)] + E [Y1]
2
Var(N(t)) = λtE

[
Y 2
1

]
.

Page 3 of 11



February 27, 2025 ACTSC 624 – Week 7 Justin Ko

1.4 Normal Approximation

In the following, we introduce a technique to approximate a compound Poisson process defined in
Definition 1.15 using the CLT.
Idea: Approximate the distribution of

X(t)− E[X(t)]√
Var(X(t))

by the standard normal distribution Z0,1 ∼ N (0, 1) by the CLT.
Application:

1. Calculate E[X(t)] and Var(X(t)).

2. For x ≥ 0,

P(X(t) ≤ x) = P

(
X(t)− E[X(t)]√

Var(X(t))
≤ x− E[X(t)]√

Var(X(t))

)

≈ Pr

(
Z0,1 ≤ x− E[X(t)]√

Var(X(t))

)
= Φ

(
x− E[X(t)]√
Var(X(t))

)
,

where Φ(x) is the c.d.f. of the standard normal distribution.

Remark 1.18. When E[N(t)] is large, the approximated value Φ

(
x−E[X(t)]√
Var(X(t))

)
will be close to the

true value P(X(t) ≤ x). Otherwise, these two values could be much different.

1.5 Example Problems

1.5.1 Proofs of Main Results

Problem 1.1. Prove Theorem 1.7.

Solution 1.1. For τ1,
P (τ1 > t) = P (N(t) = 0) = e−λt,

which shows that τ1 is an exponential random variable with mean 1/λ. For τ2, we have

P (τ2 > t| τ1 = s) = P (N(s+ t)−N(s) = 0| τ1 = s)

= P (N(s+ t)−N(s) = 0) = P (N(t) = 0) = e−λt,

i.e., τ2 is independent of τ1 and has the same distribution. Iterating this argument completes the proof.
For the second part of the assertion, it is enough to observe that (1) yields a one-to-one correspon-

dence between a counting process and its interarrival times.

Problem 1.2. Prove the superposition Theorem (Proposition 1.10).

Solution 1.2. We check the three defining properties of a Poisson process.

1. N(0) = N1(0) +N2(0) = 0.

2. N has independent increments because N1(t) both N2(t) have independent increments, so for
any 0 ≤ t0 < · · · < tn,

N(tk+1)−N(tk) = N1(tk+1)−N1(tk) +N2(tk+1)−N2(tk)

are all independent for 0 ≤ k ≤ n since each increment depends on independent random variables.
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3. The distribution of N(t+h)−N(t) = N1(t+h)−N1(t)+N2(t+h)−N2(t) is Poisson distributed
with parameter (λ1 + λ2)h since it is the sum of independent Poisson random variables with
parameters λ1h and λ2h respectively (see Remark 1.19 for a quick proof).

Remark 1.19. Recall that the sums of independent Poisson distributed random variables are Poisson
distributed. To see this recall that if X ∼ Poi(λ) then its moment generating function is

MX(t) = eλ(e
t−1) for t ∈ R

Therefore, if X ∼ Poi(λ1) and Y ∼ Poi(λ2) are independent, then

MX+Y (t) = MX(t)MY (t) = e(λ1+λ2)(e
t−1)

so by the inversion theorem, X + Y ∼ Poi(λ1 + λ2).

Problem 1.3. Prove the mean and variance formula in Proposition 1.17.

Solution 1.3. These computations follow from manipulations of conditional expectations and vari-
ances. To compute the expected value, we apply the law of total expectation

E [X(t)] = E [E[X(t) |N(t)]] law of total expectation

= E [Y1N(t)] linearity

= E[Y1]E[N(t)] independence

= λtE[Y1]. E[N(t)] = λt

To compute the variance, we apply the law of total variance,

Var [X(t)] = E[Var(X(t) |N(t))] + Var(E[X(t) |N(t)]) law of total variance

= E[Var(Y1)N(t)] + Var(E[Y1]N(t))) linearity

= Var(Y1)E[N(t)] + E[Y1]
2 Var(N(t))) E[aX] = aE[X],Var(aX) = a2 Var(X)

= λtE[Y 2
1 ] E[N(t)] = Var(N(t)) = λt

and the fact that Var(X) = E[X2]− E[X]2.

Remark 1.20. It is almost obvious that by linearity and independence,

E[X(t) |N(t)] = E
[N(t)∑

i=1

Yi |N(t)

]
= E[Y1]E[N(t)].

A rigorous proof of this fact in general follows from Wald’s Identity, but for this problem we can do
the computation explicitly. Let n ≥ 0, we have

E[X(t) |N(t) = n] =

∫∫∫ ( n∑
i=1

yi

)
fY1,...,Yn | N(t)(y1, . . . , yn | n) dy1 . . . dyn

=

∫∫∫ ( n∑
i=1

yi

)
fY1

(y1) · · · fYn
(yn) dy1 . . . dyn independence

=

n∑
i=1

∫
yifYi(yi) dyi linearity

= nE[Y1]. definition

The computation above makes it very clear how independence plays its role.
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1.5.2 Applications

Problem 1.4. Suppose that the number of calls per hour arriving at an answering service follows a
Poisson process with intensity λ = 4.

1. What is the probability that fewer than two calls come in the first hour?

2. Suppose that six calls arrive in the first hour. What is the probability that at least two calls will
arrive in the second hour?

3. Suppose it is known that exactly eight calls arrived in the first two hours. What is the probability
that exactly five of them arrived in the first hour?

Solution 1.4.

Part (a):

P (N(1) < 2) = P (N(1) = 0) + P (N(1) = 1) = e−λ + λe−λ = 5e−4.

Part (a):

P (N(2)−N(1) ≥ 2|N(1) = 6) = P (N(2)−N(1) ≥ 2)

= P (N(1) ≥ 2)

= 1− 5e−4

Part (c):

P (N(1) = 5|N(2) = 8) =
P (N(1) = 5, N(2) = 8)

P (N(2) = 8)

=
P (N(1) = 5, N(2)−N(1) = 3)

P (N(2) = 8)

=
P (N(1) = 5)P (N(2)−N(1) = 3)

P (N(2) = 8)

=
P (N(1) = 5)P (N(1) = 3)

P (N(2) = 8)

=
e−λλ5

5!
e−λλ3

3!
e−2λ(2λ)8

8!

=
7

32
.

Problem 1.5. Consider the situation of Problem 1.4, where calls arrive at a desk according to a
Poisson process with intensity λ = 4. What is distribution of the time it takes until 15 calls have
arrived, and what is the corresponding expectation?

Solution 1.5. Write T15 = τ1 + · · · + τ15. Since the τi are i.i.d. with Exp(λ), the random time T15

has a Gamma (or Erlang) distribution with density

fT15(x) =
λ15

14!
x14e−λx.

The corresponding mean is

E[T15] =

15∑
i=1

E[τi] =
15

λ
=

15

4
.
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Problem 1.6. A store opens at 8 A.M. From 8 until 10 customers arrive at a Poisson rate of four
an hour. Between 10 and 12 they arrive at a Poisson rate of eight an hour. From 12 to 2 the arrival
rate increases steadily from eight per hour at 12 to ten per hour at 2; and from 2 to 5 the arrival rate
drops steadily from ten per hour at 2 to four per hour at 5. Determine the probability distribution of
the number of customers that enter the store on a given day.

Solution 1.6. The arrival rate can be written as

λ(t) =



0, 0 ≤ t < 8,
4, 8 ≤ t < 10,
8, 10 ≤ t < 12,
t− 4, 12 ≤ t < 14,
38− 2t, 14 ≤ t < 17,
0, 17 ≤ t < 24.

Since
∫ 24

0
λ(t)dt = 63, the number of customers that enter the store on a given day follows a Poisson

distribution with parameter 63.

Problem 1.7. Customers arrive at an automatic teller machine (ATM) according to a Poisson process
with rate 12 per hour. The amount of money withdrawn on each transaction is a random variable with
mean $30 and standard deviation $50. (A negative withdrawal means that money was deposited.)
Suppose that the machine is in use 15 hours per day. Apply normal approximation to calculate the
probability that the total daily withdraw is less than $6000.

Solution 1.7. Let X(t) be the total amount withdrawn during the interval [0, t], where time t is mea-
sured in hours. Assuming that the successive withdrawals are i.i.d. random variables, then {X(t)}t≥0

can be modeled as a compound Poisson process:

X(t) =

N(t)∑
i=1

Yi,

where {N(t)}t≥0 is a Poisson process with intensity 12 and {Yi}i=1,2,... is a sequence of i.i.d. random
variables with mean 30 and variance 502. By the last proposition,

E [X(15)] = 15 · 12 · 30 = 5400 and Var [X(t)] = 15 · 12 ·
(
502 + 302

)
= 612000.

Hence,

P (X(15) ≤ 6000) = P
(
X(15)− 5400√

612000
≤ 6000− 5400√

612000

)
≈ P (Z ≤ 0.767) where Z ∼ N(0, 1) according to the CLT

≈ 0.78

Page 7 of 11



February 27, 2025 ACTSC 624 – Week 7 Justin Ko

2 Continuous-time Markov chains

We fix a probabiliity space (Ω,F ,P). Let {X(t)}t≥0 be a stochastic process taking values in a state
space S and

Ft = FX
t = σ(X(s) : 0 ≤ s ≤ t)

be its natural filtration.

Definition 2.1. {X(t)}t≥0 is called a continuous-time Markov chain (CTMC) if

(1) the state space S is at most countable.

(2) The process satisfies the Markov property: for s, t ≥ 0 and i ∈ S,

P(X(t+ s) = i | Ft) = P(X(t+ s) = i |X(t))

To mirror the notion of the Markov property for DTMC, we see that Condition (2) is equivalent to

(2’) for any s, t ≥ 0, n ∈ N, 0 ≤ r0 < · · · < rn ≤ t, and i, j, x0, . . . , xn ∈ S,

P (X(t+ s) = j|X(t) = i,X(rn) = xn, . . . , X(r0) = x0) = P (X(t+ s) = j|X(t) = i) .

Remark 2.2. The Poisson process is a CTMC. More generally, every continuous-time process that has
independent increments and takes values in Z is a CTMC. However, recall that the Markov property
does not necessarily imply independent increments (See Problem 2.3)

Definition 2.3. A CTMC is called (time-)homogeneous if, for any s, t ≥ 0 and i, j ∈ S,

P (X(t+ s) = j|X(t) = i) = P (X(s) = j|X(0) = i) .

Example 2.4. The non-homogeneous Poisson process is a non-homogeneous CTMC. On the other
hand, the (homogeneous) Poisson process becomes a homogeneous CTMC, if we define a Poisson
process with start in i ∈ {0, 1, . . . } as

Ñ(t) := i+N(t),

where N(t) is a Poisson process with start in N(0) = 0.

As in the case of a DTMC, from now on, we only consider homogeneous CTMCs unless otherwise
stated.

2.1 The transition semigroup of a CTMC

Definition 2.5. The transition probabilities of a homogeneous CTMC are defined as

pij(t) = P (X(t) = j|X(0) = i) = P (X(t+ s) = j|X(s) = i) .

The transition semigroup is defined as

P (t) = (pij(t))i,j∈S , t ≥ 0,

with P (0) = I, the identity matrix. We assume from now on that

P (h) −→ P (0) = I,

that is, pij(h) → δij as h ↓ 0.

Just like for the transition matrix, for each t ≥ 0, the matrix P (t) = (pij(t))i,j∈S satisfies{
pij(t) ≥ 0, for all i, j ∈ S,∑

j∈S pij(t) = 1, for all i ∈ S.

The following result explains the term “semigroup”.

Page 8 of 11



February 27, 2025 ACTSC 624 – Week 7 Justin Ko

Theorem 2.6 (Chapman–Kolmogorov equations)

For s, t ≥ 0,
P (t+ s) = P (t)P (s) = P (s)P (t).

The transition mechanism of a CTMC has two components:

1. The time spent at a given state i before leaving it.

2. The jump mechanism by which the next state is chosen.

2.2 The sojourn times of a CTMC

We begin by defining a notion of how long a CTMC stays at a state before leaving it.

Definition 2.7. Given that X(0) = i, the sojourn time of the CTMC at state i is the random time
Ui defined as

Ui = min {t ≥ 0 : X(t) ̸= i} .

The sojourn time for the Poisson process is exponential. We will see that this holds more generally.

Remark 2.8. Note that Ui > 0 can only happen if X(0) = i. Therefore, we will consider Ui only
under the probability measure P( · |X(0) = i).

Proposition 2.9

Under P( · |X(0) = i), the sojourn time Ui has an exponential distribution.

Two natural follow-up questions are:

1. Q1: What is the value of the parameter in the exponential distribution of Ui?

2. Q2: What states does the CTMC move to?

We will answer these questions in the next section, but before moving on, we give some brief
motivation. Notice that

P(Ui > △t) = e−αi△t = 1− αi△t+
1

2
αi(△t)2 − 1

3!
αi(△t)3 + · · ·

= 1− αi△t+ o(△t)

where o(△t) represents some function that is much smaller than △t for △t is small, i.e.,

lim
△t→0

o(△t)

△t
= 0.

That is,

P(no transition occurred by time △t) = 1− αi△t+ o(△t).

Furthermore,

P(one transition occurred by time △t) = αi△t+ o(△t),

P(at least two transitions occurred by time △t) = o(△t).
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2.3 Example Problems

2.3.1 Proofs of Results

Problem 2.1. Prove the Chapman–Kolmogorov Equations.

Solution 2.1. The proof is identical to the discrete case. By Markov property and homogeneity, we
have by the chain rule for conditional probabilities

pij(t+ s) = P (X(t+ s) = j|X(0) = i)

=
∑
k∈S

P (X(t+ s) = j|X(t) = k,X(0) = i)P (X(t) = k|X(0) = i)

=
∑
k∈S

P (X(t+ s) = j|X(t) = k)P (X(t) = k|X(0) = i)

=
∑
k∈S

P (X(s) = j|X(0) = k)P (X(t) = k|X(0) = i)

=
∑
k∈S

pik(t)pkj(s).

Writing this identity in matrix notation yields the assertion.

Problem 2.2. Prove Proposition 2.9.

Solution 2.2. We consider the conditional probability

P (Ui > t+ s|Ui > s, X(0) = i) = P (X(u) = i for u ∈ [0, t+ s]|X(u) = i for u ∈ [0, s])

= P (X(u) = i for u ∈ (s, t+ s]|X(u) = i for u ∈ [0, s])

= P (X(u) = i for u ∈ (s, t+ s]|X(s) = i) , by Markov property

= P (X(u) = i for u ∈ (0, t]|X(0) = i) , by homogeneity

= P (Ui > t|X(0) = i) , by definition

Therefore, the distribution of the sojourn time Ui is memoryless. Since the exponential distribution
is the only distribution with the memoryless property, Ui follows an exponential distribution with some
parameter αi.

Problem 2.3. Give an example of stochastic process that satisfies the Markov property, but does not
have independent increments.

Solution 2.3. We first provide a discrete time example. Let (ξn)n≥1 be independent Rademacher
random variables,

P(ξ = ±1) =
1

2
.

Notice that (ξn)n≥0 is Markov because

P(ξn = xn | ξn−1 = xn−1, . . . , ξ0 = x0) = P(ξn = xn) = P(ξn = xn | ξn−1 = xn−1)

but clearly the increments Xn = ξn− ξn−1 and Xn−1 = ξn−1− ξn−2 are not independent because they
depend on the same random variables. A continuous time version of this example can be constructed
by consider the same process (ξt)t≥0 but indexed by time.
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2.3.2 Applications

Problem 2.4. What is the transition semigroup of a Poisson process with intensity λ > 0?

Solution 2.4. Recall that a Poisson process with intensity λ > 0 satisfies

P (N(t+ h)−N(t) = n) = e−λh (λh)
n

n!
, n = 0, 1, 2, . . .

Therefore,

pij(t) = P(N(t) = j |N(0) = i) =

{
e−λh (λh)j−i

(j−i)! j ≥ i

0 j < i.

Page 11 of 11


	Poisson processes
	Basic Definitions
	Properties of the Poisson process
	Nonhomogeneous Poisson process and compound Poisson process
	Normal Approximation
	Example Problems
	Proofs of Main Results
	Applications


	Continuous-time Markov chains
	The transition semigroup of a CTMC
	The sojourn times of a CTMC
	Example Problems
	Proofs of Results
	Applications



