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1 Discrete Time Markov Chains – Basic Definitions

We will define a class of stochastic processes with possible outcomes that only depend on its current
state.

Definition 1.1. A stochastic process X = {Xn}n≥0 taking values in a state space S is called a
discrete-time Markov Chain (DTMC) if

1. The state space S is countable.

2. The Markov property holds: for all n ∈ {0, 1, 2, · · · } = N and x0, . . . , xn+1 ∈ S, we have

P (Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) = P (Xn+1 = xn+1|Xn = xn) .

Intuitively, the Markov property states that the probability that the Markov chain moves to state
xn+1 at time n+ 1 depends only on the state xn in which it is in at time n and not on any states in
which it was before time n. The state space is often taken to be subsets of the integers Z.

Example 1.2. Let Y1, Y2, . . . be an i.i.d. (independent and identically distributed) sequence of random
variables taking the values −1 and +1 with equal probability, i.e.,

P(Yi = −1) = P(Yi = +1) =
1

2
.

For some initial value x ∈ Z, we let

S0 := x and Sn := x+ Y1 + · · ·+ Yn for n ≥ 1.

Then the stochastic process {Sn}n=0,1,... is a Markov chain and called the simple random walk
starting from x.

Definition 1.3. A DTMC X is homogeneous if

P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i) , for any n ∈ I and i, j ∈ S.

Unless otherwise stated, we will assume that all DTMCs are homogeneous DTMCs from now on.
This assumption essentially implies that the state space and the transition probabilities do not change
over time.

Example 1.4. The simple random walk is a homogeneous DTMC.

1.1 The Distribution of DTMCs

We want to describe the distribution of (homogeneous) DTMCs. We first define the transition prob-
abilities, which determine the probability to go to each state. This is encoded by a single matrix for
homogeneous DTMCs. We first define the probabilities to go from state i to state j in 1 step.

Definition 1.5. The 1-step transition matrix is

P = (pij)i,j∈S

where
pij := P (X1 = j|X0 = i) for i, j ∈ S.

Since the transition matrix is a matrix of probabilities, its entries must be non-negative and con-
ditionally on X0 = i, the sum over the row must sum to 1.
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Proposition 1.6

The transition matrix is a right stochastic matrix i.e.

1. pij ≥ 0 for any i, j ∈ S.

2.
∑
j∈S

pij = 1 for any i ∈ S.

Example 1.7. For the simple random walk, we have S = Z and

pi,i+1 = pi,i−1 =
1

2
and pi,j = 0 otherwise.

Next, we want to compute the probabilities to go from state i to state j in n steps.

Definition 1.8. More generally, we want to define the n-step transition probabilities

p
(n)
ij = P (Xn = j|X0 = i) for n ∈ N and i, j ∈ S,

and the corresponding n-step transition matrix

P (n) =
(
p
(n)
ij

)
i,j∈S

.

The next result shows that the n-step transition matrix can be deduced from the (1-step) transition
matrix through matrix multiplication.

Proposition 1.9

For any n ∈ N,
P (n) = P n.

That is, the n-step transition matrix is equal to the nth matrix power of the 1-step transition
matrix.

A direct consequence of this result means that we can get the (n + m)-step transition matrix by
multiplying n-step and m-step transition matrices. Intuitively, the probability to go from state i to j
in n +m steps is equal to the sum over all intermediate states k of the probability to go from i to k
in n steps and from k to j in m steps.

Corollary 1.10 (Chapman-Kolmogorov equation)

For any m,n ∈ N and i, j ∈ S,

P (n+m) = P (n)P (m) = P (m)P (n)

or, equivalently,

p
(n+m)
ij =

∑
k∈S

p
(n)
ik p

(m)
kj =

∑
k∈S

p
(m)
ik p

(n)
kj .

We are now interested in the marginal distribution of the stochastic process at time n. Let

ν(n) = (P(Xn = k))k∈S = (ν
(n)
k )k∈S

be the probability mass function of Xn. Notice that ν(n) is a |S| dimensional row vector.

Definition 1.11. The initial distribution of the Markov chain X = {Xn}n≥0 is the distribution of
X0,

ν(0) = (P(X0 = k))k∈S = (ν
(0)
k )k∈S

We have the following formula for the νk.
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Proposition 1.12 (Marginal Distribution)

For any n ∈ N,
ν(n) = ν(0)P n.

Remark 1.13. It is important that we multiply ν(0) on the right by P n. Since P is not necessarily
symmetric, the vector P (n)(ν(0))⊺ does not have the same meaning in terms of marginal probabilities.
Furthermore, we also get that (see Problem 1.5)

ν
(n)
k ≥ 0 and

∑
k∈S

ν
(n)
k = 1

which is consistent with the definition of a probability mass function.

The joint distribution of the vector (X0, . . . , Xn) is given by a similar formula through an application
of the chain rule for conditional probabilities. That is, the probability you visit states x0, x1, . . . xn in
that order is equal to the product of the probability you start at x0, the probability you go from state
x1 to state x2, etc.

Corollary 1.14 (Joint Distribution)

For any x0, x1 . . . , xn ∈ S, we have

P (X0 = x0, X1 = x1, . . . , Xn−1 = xn−1, Xn = xn) = ν(0)x0
px0x1

px1x2
· · · pxn−1xn

Remark 1.15. We have shown that the law of the entire DTMC is determined by its initial distribution
and transition matrix.

1.2 Example Problems

1.2.1 Proofs of Statements

Problem 1.1. Prove Proposition 1.9

Solution 1.1. We prove it by induction on n. First, by the definition of the 1-step transition matrix,
we have P (1) = P . Next, assume that P (n) = P n, we have

p
(n+1)
ij = P (Xn+1 = j|X0 = i)

=
∑
k∈S

P (Xn+1 = j,Xn = k|X0 = i) law of total probability

=
∑
k∈S

P (Xn+1 = j,Xn = k,X0 = i)

P (X0 = i)
definition of cond. prob.

=
∑
k∈S

P (Xn+1 = j,Xn = k,X0 = i)

P (Xn = k,X0 = i)
· P (Xn = k,X0 = i)

P (X0 = i)

=
∑
k∈S

P (Xn+1 = j|Xn = k,X0 = i)P (Xn = k|X0 = i)

=
∑
k∈S

P (Xn+1 = j|Xn = k)︸ ︷︷ ︸
=pkj

P (Xn = k|X0 = i)︸ ︷︷ ︸
=p

(n)
ik

Markov property.

=
∑
k∈S

pkjp
(n)
ik =

∑
k∈S

p
(n)
ik pkj
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The final expression is equal to the entry i, j of the matrix product P (n)P . Using the induction
hypothesis, P (n) = P n, we conclude that

p
(n+1)
ij = (P (n)P )ij = (P nP )ij = (P n+1)ij .

Problem 1.2. Prove the Chapman–Kolmogorov equation (Corollary 1.10)

Solution 1.2. From Proposition 1.9, we get

P (n+m) = P n+m = P nPm = P (n)P (m).

Clearly, we also have PmP n = P n+m = P n · Pm by the properties of matrix multiplication, so
P (n+m) = P (m)P (n). The formula

p
(m+n)
ij =

∑
k∈S

p
(n)
ik p

(m)
kj =

∑
k∈S

p
(m)
ik p

(n)
kj

is the entrywise definition of the multiplication of matrices P (m) and P (n).

Problem 1.3. Prove the formula for the marginals in Proposition 1.12.

Solution 1.3. We have

ν
(n)
k = P (Xn = k) =

∑
j∈S

P (Xn = k|X0 = j)P (X0 = j) Law of total probability

=
∑
j∈S

p
(n)
jk ν

(0)
j

=
∑
j∈S

ν
(0)
j (P n)jk Proposition 1.9 ,

so
ν(n) = ν(0)P n.

That is, ν(n) is obtained by the multiplying the row vector ν(0) on the right with the matrix P n.

Problem 1.4. Prove the formula for the joint distribution Corollary 1.14.

Solution 1.4. By the chain rule for conditional probabilities,

P (X0 = x0, X1 = x1, . . . , Xn−1 = xn−1, Xn = xn)

= P (X0 = x0)P (X1 = x1|X0 = x0) · · ·P (Xn = xn|Xn−1 = xn−1)

= ν(0)x0
px0x1

px1x2
· · · pxn−1xn

.

Problem 1.5. If P is a transition matrix, define the row vector

x⊺ = ν(0)P n.

Show that
xi ≥ 0 and

∑
i∈S

xi = 1.

That is, the row vector x⊺ ∈ R|S| encodes a probability mass function.
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Solution 1.5. Since ν(0) and P are non-negative the product will also have non-negative entries.
Furthermore, since P is a right stochastic matrix if 1 = (1, . . . , 1)⊺ then

P1 = 1.

Therefore, ∑
i∈S

xi = x⊺1 = ν(0)P n1 = ν(0)1 =
∑
k∈S

ν
(0)
k = 1 = 1

since ν(0) is a probability vector so
∑

k∈S ν
(0)
k = 1.

1.2.2 Applications

Problem 1.6. Consider a model for the state of a phone where Xn = 1 means the phone is free at
time n and Xn = 2 means the phone is busy. If the phone is free, it will be busy during the next
interval with probability p. If the phone is busy, it will be free during the next interval with probability
q. Find the transition matrix for this DTMC.

Solution 1.6. We model this with a DTMC with state space S = {1, 2} where 1 corresponds to a
free state, and 2 corresponds to a busy state. From the problem description, we have

p11 = 1− p, p12 = p, p21 = q, p22 = 1− q,

so that the transition matrix becomes

P =

(
1− p p
q 1− q

)
.

The transition diagram is displayed below:

1 21− p

p

q

1− q

Problem 1.7. In the same setting as Problem 1.6 assume that the phone is free at time 0, and that
p = 1/4 and q = 1/6. What is the probability that the phone is busy at time 6?

Solution 1.7. We have by Proposition 1.9

P =

(
3/4 1/4
1/6 5/6

)
and hence P (6) = P 6 =

(
0.424 0.576
0.384 0.616

)
,

with the initial distribution ν(0) = (1, 0) since the phone is free at time 0. By Proposition 1.12, we
have

ν(6) = ν(0)P 6 = (0.424, 0.576) .

Hence, the probability that the phone is busy at time 6 equals 0.576.
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