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1 Martingales

Definition 1.1. Let probability space (Ω,F ,P) together with a filtration {Ft}t∈T . Then the quadru-
ple (Ω,F , {Ft}t∈T ,P) is also called a filtered probability space.

In this course, T will typically be the natural numbers N = {0, 1, 2, . . . } or R+ = [0,∞) the non-
negative numbers. A martingale is a stochastic process defined with respect to a filtered probability
space. Loosely speaking, it represents the total payout of a fair game. That is, the expected value in
the future is equal to its current value.

Definition 1.2. Let X = {Xt}t∈T be a stochastic process satisfies the following two conditions.

� X is adapted to {Ft}t∈T , i.e., Xt is Ft measurable for all t ∈ T .

� E [|Xt|] < ∞ for all t ∈ T .

X is called a martingale (with respect to the filtration {Ft}t∈T }) if

E [Xt|Fs] = Xs for all s, t ∈ T with s ≤ t. (1)

If we say that X = {Xt}t∈T is a martingale without specifying the filtration, we mean that X =
{Xt}t∈T is a martingale w.r.t. its natural filtration FX

t = σ(Xs|s ∈ T , s ≤ t).

Remark 1.3. The condition (1) is equivalent to

E [Xt −Xs|Fs] = 0 for all s, t ∈ T with s ≤ t. (2)

If we let Xt denote the total payouts of a game at time t, then Xt −Xs represents the gain (or loss)
accumulated between times t and s. Condition (2) implies that based on all the information available
at time s, the expected value of this gain (or loss) is zero. In this sense, a martingale can be understood
the mathematical formalization of a fair game.

Remark 1.4. In discrete time, T = N, the condition (1) is equivalent to

E [Xn+1|Fn] = Xn for all n ≥ 0. (3)

The proof is a direct application of the tower property.

Example 1.5 (Simple Random Walk). Let Y1, Y2, . . . be i.i.d. Rademacher random variables, i.e.
P(Y = ±1) = 1

2 . Then {Xn}n≥0 defined through

X0 = 0 and Xn =

n∑
k=1

Yk (4)

is a martingale in discrete time with respect to the natural filtration FX
n . Indeed, since Yn+1 is

independent of FX
n ,

E[Xn+1|Fn] = E[Xn + Yn+1|Fn] = E[Xn|Fn] + E[Yn+1|Fn] = Xn + E[Yn+1] = Xn

which satisfies condition (3).

1.1 Properties

Naturally, the expected value of the earnings of a fair game is equal to zero.
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Proposition 1.6

If {Xt}t∈T is a martingale, then

E[Xt] = E[X0] for all t ∈ T .

We have the following formula for the second moment of the earnings between time s and t.

Proposition 1.7

Let {Xt}t∈T be a martingale with E[(Xt)
2] < ∞ for all t ∈ T . Then, for s, t ∈ T with s ≤ t,

E[(Xt −Xs)
2|Fs] = E[X2

t |Fs]−X2
s .

In particular,
E[(Xt −Xs)

2] = E[X2
t ]− E[X2

s ].

Example 1.8 (Martingale Betting Strategy). Let Xt be a simple random walk defined Example 4.
We now take an adapted stochastic process {ξn}n≥0 where ξ0 = 1 and, for n ≥ 1,

ξn =

{
2n, if Y1 = · · · = Yn = −1,

0, otherwise.

This represents a betting strategy where we double our bet until we win. Then the gambler’s total
return at time n ≥ 1 is

Vn =

n−1∑
k=0

ξk(Xk+1 −Xk)

= ξ0Y1 + · · ·+ ξn−1Yn

=

{
−1− 2− · · · − 2n−1 = −(2n − 1), if Y1 = · · · = Yn = −1

+1, otherwise.
.

One can show that with probability one there will eventually be some (random) integer n such that
Yn = 1, in which case the gambler will have won $1.

Example 1.9 (General Betting Strategies). In general, let {Xn}n≥0 be a martingale denoting the
outcomes of a fair game. We let the process {ξn}n≥0 be an adapted process denoting a betting
strategy. This means that the ξn bet is a function of the information up to the nth game.

Suppose we are at game k, if we bet ξk on the kth game, then we earn ξk(Xk+1 −Xk) on the kth
game. Our earnings associated with this betting strategy is therefore

V0 = 0, Vn =

n−1∑
k=0

ξk(Xk+1 −Xk). (5)

A natural question is if one can come up with a smart betting strategy such that E[Vn] > 0 = E[V0]
for some n? The answer to that question is no, and it is demonstrated in the following theorem. That
is, no betting strategy that can turn a martingale into a favorable game.

Theorem 1.10

Suppose {ξn}n≥0 is an adapted process such that for every n there exists a constant Cn such that
|ξn(ω)| ≤ Cn for all ω ∈ Ω. If {Xn}n≥0 is a martingale, then {Vn}n≥0 defined in (5) is again a
martingale. In particular, we have E[Vn] = 0 for all n.
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1.2 Example Problems

1.2.1 Proofs of Results

Problem 1.1. Prove Proposition 1.6.

Solution 1.1. It follows from (1.2) that

E[Xt] = E
[
E[Xt|F0]

]
= E[X0].

Problem 1.2. Prove Proposition 1.7.

Solution 1.2. We have

E[(Xt −Xs)
2|Fs] = E[X2

t − 2XtXs +X2
s |Fs]

= E[X2
t |Fs]− 2E[XtXs|Fs] + E[X2

s |Fs]

= E[X2
t |Fs]− 2XsE[Xt|Fs] +X2

s

= E[X2
t |Fs]− 2XsXs +X2

s

= E[X2
t |Fs]−X2

s .

The second identity follows from the first by taking expectations.

Problem 1.3. Prove Theorem 1.10.

Solution 1.3. We check the properties of a martingale.

(i) Clearly, {Vn}n≥0 is adapted.

(ii) Since |ξk| ≤ Ck, we define C := max{C1, . . . , Cn−1} so that

E[|Vn|] = E
[∣∣∣∣ n∑

k=1

ξk−1(Xk −Xk−1)

∣∣∣∣] ≤
n∑

k=1

E[|ξk−1(Xk −Xk−1)|]

≤
n∑

k=1

Ck−1E[|Xk −Xk−1|] ≤ C

n∑
k=1

(
E[|Xk|] + E[|Xk−1|]

)
< ∞.

(iii) Next, we have

E[Vn+1 − Vn| Fn ] = E[ ξn(Xn+1 −Xn) | Fn ]

= ξnE[Xn+1 −Xn | Fn ] = 0

so {Vn}n≥0 is a martingale. Finally, the martingale property Proposition 1.6 implies that

E[Vn] = E[V0] = 0, for all n.
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1.2.2 Definitions and Properties of Martingales

Problem 1.4. Let Y1, Y2, . . . be independent (though not necessarily identically distributed) random
variables with common expectation E[Yk] = 0 for all k. Show that {Xn}n=0,1,2,... defined by

X0 = 0 and Xn =

n∑
k=1

Yk

is a martingale in discrete time with respect to its natural filtration FX
n .

Solution 1.4. Since Yn+1 is independent of FX
n ,

E[Xn+1|Fn] = E[Xn + Yn+1|Fn] = E[Xn|Fn] + E[Yn+1|Fn] = Xn + E[Yn+1] = Xn.

Problem 1.5. Let Y1, Y2, . . . be independent and nonnegative (though not necessarily identically
distributed) random variables with common expectation E[Yk] = 1 for all k.

1. Show that {Xn}n≥0 defined through

X0 = 1 and Xn =

n∏
k=1

Yk

is a martingale.

2. Let Yk be of the form Yk = eZk−ck for independent random variables Zk with distribution
N(0, σ2

k) and certain constants ck. That is, determine ck such that {Xn}n≥0 is a martingale.

Solution 1.5.

Part 1: The fact that X is adapted and integrable is clear. To show (3), notice that by independence,

E[Xn+1 | Fn] = E
[
Yn+1

n∏
k=1

Yk

∣∣∣∣ Fn

]
=

n∏
k=1

Yk E[Yn+1 | Fn] =

n∏
k=1

Yk E[Yn+1] =

n∏
k=1

Yk = Xn.

Part 2: From part 1, it suffices to find a constant so that E[Yk] = 1. We have by the moment
generating function formula for the Gaussian,

E[Yk] = e−ck E[eZk ] = e−cke
σ2

2 = 1 ⇐⇒ ck =
σ2

2
.

Problem 1.6. Let X be a random variable such that E[|X|] < ∞ and T either {0, 1, 2, . . . } or [0,∞).
Show that

Xt := E[X|Ft], t ∈ T ,

is a martingale.

Solution 1.6. Clearly Xt is Ft measurable because the conditional expected value. Furthermore, by
Jensen’s inequality and the law of total expectation

E[|Xt|] = E[|E[X|Ft]|] ≤ E[E[|X||Ft]] = E[|X|] < ∞.

Next, so show property (1) we have by the tower property that

E [Xt|Fs] = E [E[X|Ft]|Fs] = E[X|Fs] = Xs.

Page 4 of 7



February 4, 2025 ACTSC 624 – Week 4 Justin Ko

2 Stopping time

For this section, we focus on discrete time martingales, but similar statements can be made in con-
tinuous time. A stopping time is a random variable that depends on the historical information up to
time n. We can think of a stopping time as a rule that tells use when to stop playing a game, which
naturally can only depends on past historical information.

Definition 2.1. A random time τ : Ω → N ∪ {∞} is called a stopping time if {τ ≤ n} ∈ Fn for all
n ≥ 0.

Stopping times include random variables such as such as stopping after 5 losses in a row, or stopping
after the Xt exceeds a certain value.

Example 2.2. Let {Yn}n≥0 be any adapted process and define

τ = min{n : Yn ≥ c}.

Then τ is a stopping time, which is sometimes called the first passage time of the level c.

Definition 2.3. Given a stopping time, we can define σ-algebra

Fτ = {A ∈ F : {τ ≤ n} ∩A ∈ Fn for all n}

which consists of the events that depend on the information up to a random stopping time τ . If Xn is
Fn measurable, then the random variable Xτ is Fτ measurable.

A stopping time can be interpreted as a strategy to stop a game based only on current and historical
information. The next theorem states that we cannot come up with a clever stopping strategy that
can turn a martingale into a favorable game.

Theorem 2.4 (Optional stopping theorem)

Let {Xn}n≥0 be a martingale and τ be a stopping time. Suppose that

E |Xτ | < ∞, lim
n→∞

E |Xn|1(n ≤ τ) = 0

then
E[Xτ ] = E[X0].

Remark 2.5. Notice that the conditions of Theorem 2.4 are satisfied if

1. there exists a constant C such that τ ≤ C almost surely ; or

2. |Xn∧τ | ≤ C for all n almost surely.

Both of these are reasonable assumptions on a stopping time for betting, since the first says that we
have to eventually stop playing, and the second prevents us from betting an arbitrarily amount of
money (we can’t bet more money than we have).

The integrability conditions are essential as demonstrated by the following example.

Example 2.6. Consider the situation of Example 1.8, where {Xn}n≥0 is a simple random walk and
{ξn}n≥0 is the martingale betting strategy. We have seen that {Vn}n≥0 is a martingale with V0 = 0.
We let

τ(ω) = min{n : Yn(ω) = +1},
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where Yn = Xn − Xn−1, denote the first time we win a game. Then τ is a stopping time with
P(τ < ∞) = 1 and Vτ = 1. Therefore,

E[Vτ ] = 1̸=0 = E[V0].

This does not contradict Theorem 2.4 because

P(τ = n) = 2−n P(τ > n) =
∑

k≥n+1

2−k = 2−n

so
E |Vn|1(n ≤ τ) = P(τ = n) + (2n − 1)P(τ > n) = 1

which does not go to zero.

2.1 Example Problems

2.1.1 Proofs of Results

Problem 2.1. Prove the Optional Stopping Theorem (Theorem 2.4) under the assumption that τ is
a bounded stopping time.

Solution 2.1. We first show that Xn∧τ is a martingale. We only consider the case T = {0, 1, 2, . . . }.
We have

Xn∧τ −X(n−1)∧τ = 1{τ > n− 1}(Xn −Xn−1).

Thus, stopping the process is the same as using the betting strategy ξn = 1{τ > n}, which is adapted
since τ is a stopping time. More precisely, by writing Xn∧τ as a telescoping sum we have

Xn∧τ = X0 +

n∑
k=1

(Xk∧τ −X(k−1)∧τ ) = X0 +

n∑
k=1

1{τ > k − 1}(Xk −Xk−1)

Therefore Theorem 1.10 implies that Xn∧τ is a martingale.
If τ is almost surely bounded by some constant C, then XN∧τ = Xτ for all N > C. Hence, by

Proposition 1.6,
E[Xτ ] = E[XN∧τ ] = E[X0∧τ ] = E[X0].

Remark 2.7. The general proof of Theorem 2.4 uses the dominated convergence theorem to inter-
change the limit and expected value.

Problem 2.2. Show that for a random time τ : Ω → {0, 1, . . . } ∪ {∞}, the following conditions are
equivalent:

(a) τ is a stopping time.

(b) For every n ≥ 0, we have {τ ≤ n} ∈ Fn.

(c) For every n ≥ 0, we have {τ > n} ∈ Fn.

(d) For every n ≥ 0, we have {τ = n} ∈ Fn.

Solution 2.2. The equivalence of (a) and (b) is immediate by the definition. To see that (b) and (c)
are equivalent, recall that

A ∈ Fn ⇐⇒ Ac ∈ Fn.

Since {τ ≤ n}c = {τ > n}, it follows that {τ ≤ n} ∈ Fn ⇐⇒ {τ > n} ∈ Fn so (b) and (c) are
equivalent. To see that (b) and (c) are equivalent, notice that

{τ = n} = {τ ≤ n} \ {τ ≤ n− 1}

so {τ = n} if (b) holds since the σ-algebra is closed under unions and complements.
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2.1.2 Applications

Problem 2.3. Let {Xn}n≥0 is a simple random walk, a, b ∈ N, and

τ = min{n |Xn = −a or Xn = b}.

Find
P[Xτ = b].

Solution 2.3. Recall that {Xn}n≥0 is a martingale and τ is a stopping time. We can interpret Xn∧τ

as the balance in a fair coin-tossing game between two players with respective capital a and b. We are
interested in the probability that the player with capital b goes bankrupt before the other player, i.e.,
P(Xτ = b).

We have that the stopping time τ satisfies P(τ < ∞) = 1 and |Xn∧τ | ≤ a∨ b for all n almost surely.
Therefore, using Theorem 2.4 with uniformly bounded stopped martingales implies that

0 = E[X0] = E[Xτ ] = bP(Xτ = b)− aP(Xτ = −a) = bP(Xτ = b)− a(1− P(Xτ = b))

which gives

P[Xτ = b] =
a

a+ b
.
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