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1 Conditional Expectation

1.1 Conditional distribution

Consider two random variables X and Y with joint mass function or joint density function denoted by
fX,Y , i.e.,

fX,Y (x, y) =

{
Pr(X = x, Y = y), X and Y are discrete at points x and y respectively
∂2

∂x∂y Pr(X ≤ x, Y ≤ y), X and Y are continuous at points x and y respectively

We define the following concepts.

� the marginal mass or density function of X

fX (x) =
∑
y

fX,Y (x, y) or fX (x) =

∫
R
fX,Y (x, y) dy.

� the marginal mass or density function of Y

fY (y) =
∑
x

fX,Y (x, y) or fY (y) =

∫
R
fX,Y (x, y) dx.

� the conditional mass or density function of X given Y = y

fX|Y (x|y) = fX,Y (x, y)

fY (y)
, provided fY (y) > 0. (1)

Using the conditional distribution of X given Y , the marginal mass or density function of X can
be expressed as

fX (x) =

∫
R
fX|Y (x|y) fY (y) dy or fX (x) =

∑
y∈R

fX|Y (x|y) fY (y) (2)

Proposition 1.1

If the random variables X and Y are independent, we have

fX,Y (x, y) = fX (x) fY (y) .

As an immediate consequence, we have

fX|Y (x|y) = fX (x) fY (y)

fY (y)
= fX (x) .

1.2 Conditional expectation w.r.t. random variables

Throughout this section, we assume that X given Y = y is a continuous random variable with density
function fX|Y (·|y) (if X|Y is discrete, replace all the integral signs by summation signs). The condi-
tional expectation of X given Y = y is given by the expected value with respect to the conditional
density function

E [X |Y = y ] =

∫
R
xfX|Y (x|y) dx.

This motivates the following definition:
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Definition 1.2. The conditional expectation of X given Y is the random variable

E [X|Y ] =

∫
R
xfX|Y (x|Y ) dx.

Remark 1.3. The conditional expectation is a random variable since it takes elements in the range
of Y and assigns it to a number. In other words, if we define the function g through

g(y) = E [X |Y = y ] =

∫
R
xfX|Y (x|y) dx,

then
E [X|Y ] = g(Y ).

We can interpret the conditional expected value as the “best” estimate for the value of X given a
realization of Y (see Problem 1.6).

The conditional expectation obeys the following useful properties.

Proposition 1.4

The conditional expectation has the following properties:

1. Law of total expectation: E [E [X|Y ]] = E [X]

2. Pulling out known factors: If h is a function, then

E [h(Y )X|Y ] = h(Y )E [X|Y ]

Proof. The properties follow directly from the definition

(a) We define g(y) = E [X|Y = y] =
∫
R xfX|Y (x|y) dx. By the definition of the expected value,

E [E [X|Y ]] = E [g(Y )] =

∫
R
g(y)fY (y) dy =

∫
R

(∫
R
xfX|Y (x|y) dx

)
fY (y) dy

=

∫
R

∫
R
xfX|Y (x|y) fY (y) dxdy

=

∫
R

∫
R
xfX,Y (x, y) dxdy

=

∫
R
x

(∫
R
fX,Y (x, y) dy

)
dx

=

∫
R
xfX (x) dx = E [X] .

(b) For any y in the support of Y ,

g(y) = E [h(Y )X|Y = y] =

∫
R
h(y)xfX|Y (x|y) dx = h(y)

∫
R
xfX|Y (x|y) dx = h(y)E [X|Y = y] .

Therefore,
E [h(Y )X|Y ] = g(Y ) = h(Y )E [X|Y ] .

Likewise, one can define the conditional variance in the obvious way.
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Definition 1.5. The conditional variance of X given Y is defined as

Var (X|Y ) = E
[
(X − E[X|Y ])2|Y

]
The conditional variance satisfies the following useful properties.

Proposition 1.6

We have

1. Var (X|Y ) = E
[
X2 |Y

]
− (E [X |Y ])2

2. Law of total variance: Var (X) = E [Var (X|Y )] + Var (E [X|Y ])

Proof. (a) With g(Y ) = E[X|Y ] we have from Proposition 1.4 (b) that

Var (X|Y ) = E
[
X2 − 2XE[X|Y ] + (E[X|Y ])2

∣∣Y ]
= E

[
X2 |Y

]
− 2E [XE[X|Y ] |Y ] + E

[
(E[X|Y ])2

∣∣Y ]
= E

[
X2 |Y

]
− 2E [Xg(Y ) |Y ] + E

[
(g(Y ))2

∣∣Y ]
= E

[
X2 |Y

]
− 2g(Y ) · E [X |Y ] + (g(Y ))2E[1|Y ] (by Proposition 1.4 (b))

= E
[
X2 |Y

]
− 2E [X |Y ] · E [X |Y ] + (E[X|Y ])2

= E
[
X2 |Y

]
− (E [X |Y ])2

(b) It follows from (a) and Proposition 1.4 (a) that

E [Var (X|Y )] = E
[
E
[
X2|Y

]]
− E

[
(E [X|Y ])

2
]

= E
[
X2

]
− E

[
(E [X|Y ])

2
]
.

On the other hand,

Var (E [X|Y ]) = E
[
(E [X|Y ])

2
]
− (E [E [X|Y ]])

2

= E
[
(E [X|Y ])

2
]
− (E [X])

2
.

Combining the preceding two relations implies

E [Var (X|Y )] + Var (E [X|Y ]) = E
[
X2

]
− (E [X])

2
= Var (X) .

1.3 Example Problems

Problem 1.1. Suppose a fair coin is tossed 3 times. Define the random variables X = “number of
Heads”, and

Y =

{
1 Head occurs on the first toss,

0 Tail occurs on the first toss.

1. Find the joint PMF for (X,Y ).

2. Are X and Y independent?

3. What is the conditional distribution of X given Y ?
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4. What is the probability that X + Y = 2?

Solution 1.1.

Part 1: We can compute all the probabilities one by one and encode the joint PMF of X and Y
in the table

x
fX,Y (x, y) 0 1 2 3 fY (y)

y 0 1/8 2/8 1/8 0 1/2
1 0 1/8 2/8 1/8 1/2

fX(x) 1/8 3/8 3/8 1/8 1

Part 2: We can see

fX,Y (0, 1) = 0 ̸= 1

8
· 1
2
= fX(0)fY (1)

which implies that X and Y are not independent (which makes perfect sense, as the number of heads
we have should depend on whether we had heads in the first toss).

Part 3: Using the formula fX | Y (x | y) = fX,Y (x, y)/fY (y) we find

x
0 1 2 3

fX | Y (x | y = 0) 2/8 4/8 2/8 0
fX | Y (x | y = 1) 0 2/8 4/8 2/8

Part 4: We have X + Y = 2 if and only if X = 2, Y = 0 or X = 1, Y = 1. We can sum these terms
up in the joint PMF

P(X + Y = 2) = f(2, 0) + f(1, 1) + f(0, 2) =
1

8
+

1

8
=

1

4
.

Problem 1.2. Suppose that X and Θ are two random variables such that X given Θ = θ is Poisson
distributed with mean θ, i.e.,

fX|Θ(k|θ) = e−θ θ
k

k!
, k = 0, 1, 2, . . .

and Θ is Gamma distributed with parameters α, β > 0. That is, Θ has the density function

fΘ (θ) =
βαθα−1e−βθ

Γ (α)
, θ > 0,

where Γ denotes the Gamma function,

Γ (α) =

∫ ∞

0

θα−1e−θ dθ.

Compute the marginal mass function of X.
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Solution 1.2. The marginal mass function of X is given by

P (X = k) =

∫ ∞

0

fX|Θ (k|θ)fΘ (θ) dθ

=

∫ ∞

0

θke−θ

k!
· β

αθα−1e−βθ

Γ (α)
dθ

=
βα

k!Γ (α)

∫ ∞

0

θk+α−1e−(β+1)θ dθ

=
βα

k!Γ (α)
· 1

(β + 1)k+α

∫ ∞

0

xk+α−1e−x dx

=
1

k!Γ (α)

(
β

β + 1

)α (
1

β + 1

)k

Γ (k + α)

=
(k + α− 1)(k + α− 2) · · · (α+ 1)α

k!

(
1− 1

β + 1

)α (
1

β + 1

)k

=

(
k + α− 1

k

)(
1− 1

β + 1

)α (
1

β + 1

)k

.

Therefore, X follows a negative binomial distribution with parameters α and 1
β+1 .

Problem 1.3. Suppose that X given Θ = θ is Poisson distributed with mean θ and Θ is Gamma
distributed with density function

fΘ (θ) =
βαθα−1e−βθ

Γ (α)
, θ > 0.

1. Compute E[X].

2. Compute Var[X].

Recall that if X ∼ Poi(λ) then E[X] = λ and Var(X) = λ and if X ∼ Γ(α, β then E[X] = α
β and

Var(X) = α
β2 .

Solution 1.3.

(a) Using the law of total expectation,

E [X] = E [E [X|Θ]] = E [Θ] =
α

β
.

We used the fact that the expected value of a Poisson distributed random variable is equal to its mean
parameter.

(b) By the law of total variance

Var (X) = E [Var (X|Θ)] + Var (E [X|Θ])

= E [Θ] + Var (Θ)

=
α

β
+

α

β2
=

α (β + 1)

β2
.

We used the fact that the expected value of a Poisson distributed random variable is equal to its mean
parameter and its variance is equal to its mean parameter.
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Problem 1.4. Suppose that

X =


N∑
i=1

Yi, if N > 0,

0, if N = 0,

where N is Poisson distributed with mean λ and Y1, Y2, ... is a sequence of iid random variables with
mean µ and variance σ2 that is independent of N . We say that X is a compound Poisson random
variable.

1. Compute E[X].

2. Compute Var[X].

Recall that if X ∼ Poi(λ) then E[X] = λ and Var(X) = λ.

Solution 1.4.

(a) By the law of total expectation

E [X] = E [E [X|N ]] = E [Nµ] = λµ,

(b) By the law of total variance

Var (X) = E [Var (X|N)] + Var (E [X|N ])

= E
[
Nσ2

]
+Var (Nµ)

= σ2E [N ] + µ2Var (N)

= λ
(
σ2 + µ2

)
.

We used the fact that the expected value of a Poisson distributed random variable is equal to its mean
parameter and its variance is equal to its mean parameter.

Problem 1.5. For any constant c, show that

E[(X − c)2] ≥ E[(X − E[X])2].

In particular, the expected value is the constant that minimizes the mean squared error.

Solution 1.5. This proof follows directly from the properties of the expected value. By adding and
subtracting E[X], we see that

E[(X − c)2] = E[(X − E[X] + E[X]− c)2]

= E[(X − E[X])2] + E[(E[X]− c)2] + 2E[(X − E[X])(E[X]− c)]

Since E[X]− c is not random, we see that the cross terms vanish

E[(X − E[X])(E[X]− c)] = (E[X]− c)E[(X − E[X])] = (E[X]− c)(E[X]− E[X]) = 0.

Since E[(E[X]− c)2] ≥ 0, we conclude that

E[(X − c)2] = E[(X − E[X])2] + E[(E[X]− c)2] ≥ E[(X − E[X])2]

as required.
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Problem 1.6. For any measurable function f , show that

E[(X − f(Y ))2] ≥ E[(X − E[X | Y ])2].

In particular, the conditional expectation minimizes the mean squared error.

Solution 1.6. This proof follows directly from the properties of the conditional expected value. By
adding and subtracting E[X | Y ], we see that

E[(X − f(Y ))2] = E[(X − E[X | Y ] + E[X | Y ]− f(Y ))2]

= E[(X − E[X | Y ])2] + E[(E[X | Y ]− f(Y ))2] + 2E[(X − E[X | Y ])(E[X | Y ]− f(Y ))]

Applying the law of total expectation and using the fact that E[X | Y ] and f(Y ) are measurable
functions of Y , we see that the cross terms vanish

E[(X − E[X | Y ])(E[X | Y ]− f(Y ))] = E
[
E[(X − E[X | Y ])(E[X | Y ]− f(Y )) | Y ]

]
= E

[
(E[X | Y ]− f(Y ))E[(X − E[X | Y ]) | Y ]

]
= E[(E[X | Y ]− f(Y ))(E[X | Y ]− E[X | Y ])]

= 0.

Since E[(E[X | Y ]− f(Y ))2] ≥ 0, we conclude that

E[(X − f(Y ))2] = E[(X − E[X | Y ])2] + E[(E[X | Y ]− f(Y ))2] ≥ E[(X − E[X | Y ])2]

as required.

Remark 1.7. Notice that this proof only uses the law of total expectation and the trick that allows us
to pull known factors. This will imply that this proof carries over to the general conditional expectation
with respect to σ-algebras.
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2 Conditional expectations w.r.t. σ-algebras

We now introduce general definition of conditional expectation that will allow us to condition on more
general forms of (random) information. We will use σ-algebra F0 ⊂ F as a model of information
and define the general notation of the conditional expectation of X given information F0

E[X|F0].

A σ-algebra is a natural model for the information because it contains both the negation and union of
outcomes, which can easily deduced from existing information.

2.1 Constructing σ-algebras

We first take a closer look at possible constructions of σ-algebras.

Definition 2.1. Given a collection of sets A of Ω, the σ-algebra generated by the collection of sets
A is the smallest σ-algebra containing A and is often denoted by σ(A).

Example 2.2. On Ω = {ω1, ω2, ω3, ω4} consider the following two partitions:

P1 = {{ω1}, {ω2}, {ω3}, {ω4}}
P2 = {{ω1, ω2}, {ω3, ω4}}.

In the first, we are able to distinguish between all elements of Ω. In the second, we cannot distinguish
between ω1 and ω2 and between ω3 and ω4. Thus, P1 is finer than P2. The σ-algebra σ(P1) is equal
to the power set of Ω, i.e., it contains all subsets of Ω. On the other hand,

σ(P2) =
{
∅, {ω1, ω2}, {ω3, ω4},Ω

}
.

2.1.1 σ-algebras generated by random variables

Suppose the σ-algebra F0 corresponds to the information from observing the values of a collection
Y1, . . . , Yn of F -measurable random variables. Informally, F0 then consists of all events that can be
described through the random variables Y1, . . . , Yn.

Definition 2.3. The σ-algebra F0 generated by Y1, . . . , Yn is the σ-algebra generated by events of
the form {Yi ≤ x} for all x ∈ R and i = 1, . . . , n. We write

F0 := σ(Y1, . . . , Yn).

Remark 2.4. Let X be a random variable on (Ω,F ,P). One can prove that the σ-algebra σ(X)
generated by X is equivalent to

σ(X) =
{
X−1(B) |B ∈ B(R)

}
,

where we recall that B(R) is the Borel σ-algebra on R and

X−1(B) = {ω ∈ Ω |X(ω) ∈ B} = {X ∈ B}

is the pre-image of B.

Example 2.5. Let X be the number of heads obtained for a coin tossed twice. In this case, Ω =
{HH,HT, TH, TT}. Clearly, X (HH) = 2, X (HT ) = X (TH) = 1 and X (TT ) = 0. We have

σ(X) = {∅, {HH}, {TT}, {TT,HH}, {HT, TH}, {HT, TH,HH}, {HT, TH, TT},Ω} .

Notice that this set is not equal to the power set of Ω. In particular, the set {HT} is not in σ(X)
since knowing the number of heads does not allow you to determine that {HT} happened since it is
indistinguishable from the event {TH}, while {HT, TH} is in the set, since the events you flipped HT
or TH corresponds to the event of flipping exactly 1 heads.
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2.2 Independent σ-algebras

Consider a probability space (Ω,F ,P). Recall that two events A,B ∈ F are called independent
under P if

P(A ∩B) = P(A)P(B).

The notion of independence can be extended to σ-algebras in the obvious way.

Definition 2.6. Two σ-algebras F1,F2 ⊂ F are independent if

P(A1 ∩A2) = P(A1)P(A2), for any A1 ∈ F1 and A2 ∈ F2.

The notation of independence of random variables can also be stated with respect to σ-algebras.

Definition 2.7. Two random variables X1 and X2 on (Ω,F ,P) are independent if σ(X1) and
σ(X2) are independent.

Remark 2.8. This notion of independence is equivalent to the earlier notation defined in Week 1.
That is the following statements are equivalent

1. X1 and X2 are independent,

2. The probabilities satisfy

P(X1 ∈ B1, X2 ∈ B2) = P(X1 ∈ B1)P(X2 ∈ B2),

for any B1, B2 ∈ B(R).

3. The CDFs satisfy

P(X1 ≤ x1, X2 ≤ x2) = P(X1 ≤ x1)P(X2 ≤ x2) = FX1(x1)FX2(x2) ∀x1, x2

The independence between a random variable and σ-algebra is also defined in the natural way.

Definition 2.9. A random variable X is independent of a σ-algebra F1 ⊂ F if σ(X) and F1 are
independent.

2.3 Conditional expectations with respect to general σ-algebras

Definition 2.10. Consider a random variable X on (Ω,F ,P) and a σ-algebra F0 ⊂ F . We define
the conditional expectation of X given F0 as a random variable E[X|F0] satisfying the following
two conditions:

1. E[X|F0] is a F0-measurable random variable.

2. E
[
E[X|F0]1A

]
= E[X1A] for any A ∈ F0.

Remark 2.11. The conditional expectation is unique, so there is only one random variable that can
satisfy the second condition (see Problem 2.3).

The first condition is natural because we want to be able to define the conditional expectation with
respect to the outcome of a random events: your best guess for a random variable should be able to
adapt to a random event in F0. Since the expected value is the “best” (see Problem 1.5) guess for X,
the second condition means that the conditional expected value is always the best guess for X given
the outcome of any A ∈ F0.

Example 2.12. One can show that the preceding definition gives the following special cases:
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� Consider the case F0 = σ(Y ). In general, a random variable Z is F0-measurable if and only if
there is a function h such that

Z = h(Y1, . . . , Yn).

The conditional expectation is the function given by

E[X|F0] = E[X|Y ]

where the right-hand side is the function of Y defined in the same way as in Section 1.2.

� Consider the case F0 = σ(Y1, . . . , Yn). In general, a random variable Z is F0 measurable if and
only if there is a function h such that

Z = h(Y1, . . . , Yn).

The conditional expectation is the function given by

E[X|F0] = E[X|Y1, . . . , Yn] = g(Y1, . . . , Yn).

where the function g can be defined in the same way as in Section 1.2. We denote by fY1,...,Yn

the joint probability density (or probability mass function) of Y1, . . . , Yn and define

fX|Y1,...,Yn
(x|y1, . . . , yn) :=

fX,Y1,...,Yn
(x, y1, . . . , yn)

fY1,...,Yn(y1, . . . , yn)
,

where fX,Y1,...,Yn is the joint density of X,Y1, . . . , Yn. Then we let

g(y1, . . . , yn) =

∫
R
xfX|Y1,...,Yn

(x|y1, . . . , yn)dx.

� Let P = {A1, A2, . . . } be a partition of Ω and let F0 = σ(P). In general, a random variable Z
is F0-measurable if and only if Z is of the form

Z =

∞∑
i=1

zi1Ai

for some real numbers z1, z2, . . . . The conditional expectation is the function given by

E[X|F0] =

∞∑
i=1

E[X|Ai]1Ai

where the coefficients are given by the (elementary) conditional expectation

E[X|Ai] =

{E[X1Ai
]

P(Ai)
if P(Ai) > 0

0 if P[Ai] = 0
.

The following proposition lists many useful propositions of the conditional expectation that will be
used to do computations with conditional expectations.
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Proposition 2.13

For a random variable X on (Ω,F ,P) and a σ-algebra F0 ⊂ F :

1. Stability: If X is F0-measurable, then E[X|F0] = X

2. Trivial σ-algebra: If G is the trivial σ-algebra, i.e., G = {∅,Ω}, then

E[X|G ] = E[X]

3. Law of total expectation: E [E[X|F0]] = E[X]

4. Linearity: E[aX + bY |F0] = aE[X|F0] + bE[Y |F0]

5. Pulling out known factors: If Y is F0-measurable, then

E[XY |F0] = Y E[X|F0]

6. Tower property: If F0 ⊂ F1 ⊂ F are σ-algebras, then

E[X|F0] = E [E[X|F1]|F0]

7. (Interchanged) Tower Property: If F0 ⊂ F1 ⊂ F are σ-algebras, then

E[X|F0] = E [E[X|F0]|F1]

8. Independence: If X is independent of F0, then

E[X|F0] = E[X].

9. Monotonicity: If X ≤ Y then

E[X | F0] ≤ E[Y | F0].

10. Jensen’s inequality: If ϕ : R → R is convex, then

ϕ (E[X|F0]) ≤ E[ϕ (X) |F0]

2.4 Example Problems

Problem 2.1. Show that E[1 | F0] = 1 for any F0 ⊆ F .

Solution 2.1. We require that for every A ∈ F0,

E[1A] = E[1A E[1 | F0]].

Clearly this equality holds when E[1 | F0] = 1, so we conclude by uniqueness. An alternative proof is
to realize that 1 is independent of F0 since σ(1) = {∅,F} which is trivially independent with F .

Problem 2.2. We roll two fair dice and record their values D1 and D2. Let X = D1+D2 denote the
sum of both dice, and let Y = D1 denote the value of the first dice. Compute E[X] and E[X | Y ].
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Solution 2.2. The expected value of X by linearity is

E[X] = E[D1] + E[D2] =

6∑
x=1

x

6
+

6∑
y=1

y

6
=

7

2
+

7

2
= 7.

Our expected value of X will adapt if we know the value of D2. In particular, we have

E[X | Y ] = E[D1 + Y | Y ] = E[D1 | Y ] + E[Y | Y ] = E[D1 | Y ] + Y E[1 | Y ] = E[D1] + Y =
7

2
+ Y.

where we used linearity in the second equality, pulling out known factors in the third and independence
in the fourth equality.

Problem 2.3. Show that the conditional expectation is unique, i.e. there is only one F0 measurable
random variable denoted by [E[X|F0] that satisfies

E
[
E[X|F0]1A

]
= E[X1A]

for all A ∈ F0.

Solution 2.3. Suppose there exists random variables Y = E[X | F0] and Y ′ = E[X | F0] such that
P(Y = Y ′) ̸= 0. We must have that either P(Y > Y ′) > 0 or P(Y < Y ′) > 0. Suppose without loss
of generality that the first holds. Since both Y and Y ′ are measurable, the event A = {Y > Y ′} ∈ F
and P(Y − Y ′ > 0) = P(Y > Y ′) > 0, so

E[(Y − Y ′)1A] > 0

since Y > Y ′ on A and P(A) > 0. However, by the second property of conditional expectations
E[Y 1A] = E[Y ′

1A] = E[X1A], so

E[(Y − Y ′)1A] = E[Y 1A]− E[Y ′
1A] = E[X1A]− E[X1A] = 0

which is a contradiction.

Problem 2.4. Prove all the statements in Proposition 2.13

Solution 2.4. These properties will allow from manipulations of the definition of conditional expec-
tation.

1. Stability: Clearly X is F0 measurable. Furthermore, the random variable X satisfies the second
condition for the conditional expectation E[X | F0] trivially, i.e. for any A ∈ F0,

E[X1A] = E[E[X | F0]1A]

so E[X | F0] = X by uniqueness.

Alternative Proof: This is also a special case of the the pulling out known factors property.
Suppose that X is F0 measurable. By pulling known factors (proved later) we have that

E[X | F0] = X E[1 | F0] = X.

2. Trivial σ-algebra: Since E[X |G ] is G measurable it must be a constant function. To find what
this constant E[X | G ] = c must be, we can take A = Ω see that

c = E[c] = E[E[X | G ]] = E[E[X | G ]1Ω] = E[X1Ω] = E[X].
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3. Law of Total Expectation: Taking A = Ω, we have that

E[E[X | F0]] = E[E[X | F0]1Ω] = E[X1Ω] = E[X].

4. Linearity: This implies that the conditional expectation behaves like the usual expectation. We
check that the right hand side satisfies the definition of conditional expectation for the random
variable E[aX + bY |F0], i.e. for any A ∈ F0

E[(aE[X | F0] + bE[Y | F0])1A] = aE[E[X | F0]1A] + bE[E[Y | F0]1A]

= aE[X1A] + bE[Y 1A]

= E[(aX + bY )1A]

= E[E[(aX + bY ) | F0]1A].

Therefore, by uniqueness E[aX + bY |F0] = aE[X | F0] + bE[Y | F0].

5. Pulling out known factors: The statement itself is very natural, since Y being F0 measurable
means it is in some sense not random once given information F0, so we can factor out.

The proof is a bit technical for this course, but we will include it here for completeness. It suffices
to show this result for constant random variables Y = 1B ∈ F0, because more general random
variables can be approximated by linear combinations of such random variables, so the result
will follow from linearity. Therefore, it remains to show that

E[1BX | F0] = 1B E[X | F0].

Notice that for any A ∈ F0, A ∩ B ∈ F0 by the definition of a σ-algebra. We check that the
random variable 1B E[X |F0] (which is clearly F0 measurable since it is the product of measurable
functions) satisfies the definition of the conditional expectation E[1BX | F0], i.e. for any A ∈ F0

E[(1B E[X | F0])1A] = E[E[X | F0]1A∩B ] = E[X1A∩B ] = E[(X1B)1A] = E[E[1BX | F0]1A].

By uniqueness, E[1BX | F0] = 1B E[X | F0].

6. Tower Property: This proof is part of Assignment #2.

7. (Interchanged) Tower Property: This proof is part of Assignment #2.

8. Independence: Clearly E[X] is F0 measurable since it is a constant function. We show that
E[X] satisfies the definition of conditional expectation of E[X | F0], i.e. for any A ∈ F0 we have

E[E[X]1A] = E[X]E[1A] =︸︷︷︸
⋆

E[X1A] = E[E[X | F0]1A]

where in ⋆ we used the fact that if X and Y are independent then E[X]E[Y ] = E[XY ]. We
conclude that E[X] = E[X | F0] by uniqueness.

9. Monotonicity: We proceed by contradiction. Suppose that X ≤ Y , but assume for the sake of
contradiction that the set A = {E[X | F0] > E[Y | F0]} = {E[X | F0]− E[Y | F0] > 0} is satisfies
P(A) > 0. Notice that A ∈ F0 since E[X | F0] and E[Y | F0] are F0 measurable.

Since X ≤ Y implies X − Y ≤ 0, the properties of conditional probability implies that

0 ≥ E[(X − Y )1B ] = E[E[(X − Y ) | F0]1A] = E[(E[X | F0]− E[Y | F0])1A] > 0,

since we have that E[X | F0]−E[Y | F0] > 0 on A. However, we arrived at a contradiction 0 > 0,
so we must have P(A) = 0. Therefore, we must have that

E[X | F0] ≤ E[Y | F0]

almost surely.
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10. Jensen’s Inequality: This proof is a bit too complicated for this course. Instead, we know that
Jensen’s inequality holds for expectation E[ϕ(X)] ≥ ϕ(E[X]), and it is reasonable that the same
result holds for conditional expectations. The proof classical proof of Jensen’s uses linearity and
monotonicity, which also holds for conditional expectation.
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