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1 Introduction to Probability

Probability is the area of mathematics concerned with describing uncertain or random events.

1.1 Basic Concepts

We first begin by recalling some crucial definitions that will appear throughout this course.

1.1.1 Probability Space

A probability space (Ω,F ,P) consists of three parts: Ω the set of all possible outcomes, F the events we
can assign probability to, and P the probability of each event. This forms the foundation of probability
theory.

Definition 1. A nonempty set Ω is called a sample space denotes the set of all possible outcomes.

Definition 2. A collection of subsets F of Ω is called a σ-algebra on Ω if

� Ω ∈ F

� if A ∈ F , then Ac ∈ F

� if A1, A2, . . . ∈ F , then
∞⋃
i=1

Ai ∈ F .

The elements of F are often called events.

Remark 1. When Ω = Rn, it is typically not possible to take F to be the power set consisting of
all subsets of Rn. Some sets in Rn are very weird, and need to be excluded. The classical choice of
σ-algebra on Rn is the Borel σ-algebra

B(Rn),

which is defined as the smallest σ-algebra that contains all open cubes

(a1, b1)× · · · × (an, bn) with ai < bi

It is quite difficult to construct sets that are not Borel sets., so B(Rn) contains all “reasonable” sets.

Definition 3. A function P is a probability measure on the σ-algebra F if

1. P (Ω) = 1;

2. P ≥ 0 for all A ∈ F ;

3. P is countably additive, i.e. if A1, A2, . . . ∈ F are disjoint (Ai ∩Aj = ∅ for all i ̸= j), then

P

( ∞⊔
i=1

Ai

)
=

∞∑
i=1

P (Ai) .

1.1.2 Independence

A natural property of many events and random variables is independence. We will see later that
independence allows us to control the randomness and make very precise statements about multiple
random events.

Definition 4 (Independence of Events). Two events A,B are called pairwise independent (under
the probability measure P) if

P (A ∩B) = P (A)P (B) .

More generally, n events A1, . . . , An are independent if for all k = 2, . . . , n and distinct numbers
i1, . . . , ik ∈ {1, . . . , n}

P(Ai1 ∩ · · · ∩Aik) = P(Ai1) · · ·P(Aik).

Remark 2. Independence is stronger than requiring only pairwise independence (see Problem 1.8)
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1.1.3 Conditional Probabilities

Our probabilities change when given more information. Conditional probabilities are the way to
describe how probabilities change as we get more information.

Definition 5. Let any probability space (Ω,F ,P) be given. For two events A,B ∈ F with P(B) ̸= 0,
the conditional probability P(A|B) is defined as

P(A|B) =
P(A ∩B)

P(B)
.

This leads to the alternative intuitive definition of independence.

Definition 6. If A and B are independent, then

P(A|B) = P(A).

The following rule allows us to compute the probability an event by breaking it down into cases.

Theorem 1 (Law of Total Probability)

Consider a partition B1, B2, ... of Ω, i.e., Bi∩Bj = ∅ and
∞⋃
i=1

Bi = Ω. Assume that A,B1, B2, ... ∈

F . It follows that

P (A) =

∞∑
i=1

P(A ∩Bi) =

∞∑
i=1

P (A|Bi)P (Bi) .

Remark 3. The conditions of a partition essentially mean that the cases are distinct Bi ∩Bj = ∅ to

avoid over counting, and that no cases are left out
∞⋃
i=1

Bi = Ω to avoid under counting.

1.2 Random Variables

Instead of working with abstract probability spaces (Ω,F ,P) it is often convenient to work with Ω = R
or Ω = Rn. Random variables are functions defined on the underlying probability space that encode
numerical outcomes of a random experiment.

Example 1. Suppose we are interested in the number of heads obtained in an experiment of tossing
two coins. Let X be the number of heads. X is a function of the outcome ω ∈ Ω = {HH,HT, TH, TT}
of our coin toss:

X(HH) = 2, X(HT ) = 1, X(TH) = 1, X(TT ) = 0.

Definition 7. Consider a probability space (Ω,F ,P). A function X : (Ω,F) → (R,B) is called an
F -measurable random variable if

{X ≤ x} := {ω ∈ Ω : X (ω) ≤ x} ∈ F , for all x ∈ R.

The set B is called the Borel σ-algebra, the σ-algebra generated by the open sets.

The distribution of the random variable encodes the information of a probability measure on R.

Definition 8. The function defined as

FX (x) = P (X ≤ x) := P ({X ≤ x}) , x ∈ R

is called the cumulative distribution function (CDF) of X.
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Theorem 2 (Characterization of a CDF)

The cdf F satisfies

(i) right-continuous,

(ii) non-decreasing,

(iii) satisfies limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Conversely, any function F with these properties (i), (ii) and (iii) is the cdf of some random variable.

Definition 9. For a random variable X, the kth moment is defined as

E [Xk] =

∫ +∞

−∞
xk dFX(x).

The kth central moment is defined as

E [(X − µ)k] =

∫ +∞

−∞
(x− µ)k dFX(x).

The first moment is called the mean or expectation of X, and it is commonly denoted by µX or µ.
The second central moment is called the variance of X and it is denoted by σ2

X or simply σ2. The
square root of the variance, i.e., σX or σ, is called the standard deviation.

Remark 4. The mean of the random variable can be interpreted as the average value of many samples
of a random variable. The variance of the random variable can be interpreted as a measure of the
spread of the random variable.

More generally, the expected value of a function of a random variable is computed in the obvious
way.

Proposition 1 (Law of the Unconscious Statistician)

For any real-valued function g, we have

E [g(X)] =

∫ +∞

−∞
g(x) dFX(x),

and the integration has different expressions depending on the type (discrete, continuous, and
mixed types) of X.

In this course, we will commonly work with two classes of random variables.

Definition 10. We say that X is a discrete random variable if X only takes at most countable
(including finitely countable) number of real values {x1, x2, ...}. We denote by pX its probability
mass function (pmf), i.e.,

pX (xi) = P (X = xi) , i ∈ N.

For a discrete random variable X, we have that

� cdf:

FX (x) = P (X ≤ x) =

∞∑
i=1

pX (xi)1[xi,∞)(x)

with 1[xi,∞) denoting the indicator function of the interval [xi,∞).
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� for a general function g,

E [g(X)] =
∑
i∈N

g(xi)pX (xi)

Example 2. Examples of discrete distributions include the Poisson, binomial, and negative binomial
distributions.

Definition 11. We say that X is a continuous random variable if the distribution function of X
is continuous everywhere and differentiable almost everywhere. We denote by fX or f its probability
density function (pdf), i.e.,

fX(x) =
d

dx
FX(x) = F ′X(x), x ∈ R.

For a continuous random variable X, we have that

� cdf:

FX (x) =

∫ x

−∞
fX(t)dt, x ∈ R.

� for a general function g,

E [g(X)] =

∫ ∞
−∞

g(t)fX(t)dt

Example 3. Examples of continuous distributions include the exponential, Gamma, Weibull, and
normal distributions.

Definition 12. We call X a mixed random variable if it has both discrete and continuous compo-
nents.

For a mixed random variable X, let {x1, x2, ...} be those real numbers x for which p(x) = P(X =
x) > 0, and let f be a density function for the continuous component. We have that

� cdf:

FX(x) = P(X ≤ x) =

∞∑
i=1

p(xi)1[xi ∞)(x) +

∫ x

−∞
f(y) dy.

� for a general function g,

E [g(X)] =

∞∑
i=1

g(xi)p(xi) +

∫ ∞
−∞

g(x)f(x) dx

1.2.1 Random Vectors

We now define a high dimensional analogue of a random variables, which maps the probability space
to Rn instead of R.

Definition 13. For a random vector X = (X1, X2, ..., Xn) defined on a probability space (Ω,F ,P),
we define its joint distribution function FX : Rn → [0, 1] by

FX (x) = P (X ≤ x) = P (X1 ≤ x1, ..., Xn ≤ xn)

where x = (x1, x2, ..., xn) ∈ Rn.

If X is a vector of discrete or continuous random variables, then the joint distribution function is
encoded by its mass or density function.
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Definition 14. If X is a vector of discrete random variables, then the joint mass function pX :
Rn → [0, 1] given by

pX(x1, . . . , xn) = P (X1 = x1, ..., Xn = xn)

and if X is a vector of continuous random variables, then the joint density function fX : Rn →
[0,∞) is given by

FX (x) =

∫ x1

−∞

∫ x2

−∞
· · ·
∫ xn

−∞
fX(y1, . . . , yn) dyn · · · dy1.

Often, it makes sense to look at the law of just one component Xi of the random vector X.

Definition 15. The cdf of Xi is called marginal cdf of Xi and denoted FXi .

Definition 16. The random variables X1, ..., Xn are independent if

FX (x) =

n∏
i=1

FXi
(xi) for all x = (x1, . . . , xn) ∈ Rn (1)

where FXi denotes the cdf of Xi.

Remark 5. Note that (1) can be re-written as

P ({X1 ≤ x1} ∩ · · · ∩ {Xn ≤ xn}) = P(X1 ≤ x1) · · ·P(Xn ≤ xn), for all x1, . . . xn ∈ R,

which coincides with the notion of independence for sets.

Proposition 1. The random variables X1, ..., Xn are independent if and only if for all functions
g1, . . . , gn,

E

[
n∏

i=1

gi(Xi)

]
=

n∏
i=1

E[gi(Xi)].

Proposition 2. If X1, . . . Xn are independent random variables and g1, . . . , gn are functions, then
g1(X1), . . . , gn(Xn) are also independent.

Definition 17.

� The covariance for two random variables X1, X2 is defined as

Cov (X1, X2) = E
[(
X1 − E [X1]

)(
X2 − E [X2]

)]
� The variance of a random variable X is defined as average squared deviation from the mean:

Var(X) := Cov(X,X) = E
[(
X − E[X]

)2]
Note that the covariance is a measure for the possible dependence for two random variables, and

the variance is a common measure for the variability of a random variable.

Proposition 3. We have

1. For any two random variables

Cov (X1, X2) = E [X1X2]− E [X1]E [X2]

2. If X1 and X2 are independent, then Cov (X1, X2) = 0.
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Remark 6. However, the converse of Proposition 3 (b) is not true! Two random variables with zero
covariance are called as uncorrelated random variables. Note that uncorrelated random variables
are NOT necessarily independent (see Problem 1.9).

Proposition 4. The variance has the following properties.

1. For any random variable X,

Var(X) = E[X2]−
(
E[X]

)2
2. If a, b ∈ R, then

Var(aX + b) = a2Var(X)

3. For any two random variables X and Y ,

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

4. If X and Y are independent random variables, then

Var(X + Y ) = Var(X) + Var(Y )

1.3 Transformations of random variables

Various transformations can be applied to random variables. A substantial number of well-known
distributions can be viewed as transformations of other distributions.

1.3.1 Change of Variables in One-Dimension

For a random variable X and a known function g, we define the random variable Y := g (X). One
may be interested in the distribution of Y = g (X), namely

FY (y) = Fg(X) (y) = P (g (X) ≤ y) .

Suppose that we know the PDF fX(x) of X. Our goal is to recover the the PDF fY (y) of the random
variable Y = g(X). This can be done directly using the following steps

1. Use the support of X to find the support of Y = g(X):

supp(Y ) = cl({y ∈ R : fY (y) > 0}) = g(supp(X)).

2. Compute the CDF of Y for y ∈ supp(Y ) by expressing it in terms of the CDF of X:

FY (y) = P(g(X) ≤ y) = . . .

When the function g is not strictly increasing (or decreasing) over the support of X, then we
must be careful when rewriting the inequality P(g(X) ≤ y).

3. Compute the PDF of Y by differentiating the CDF of Y ,

fY (y) = F ′Y (y) y ∈ supp(Y ).

When g is invertible, the above procedure gives us the change of density formula.

Theorem 3 (Change of Variables Formula (Continuous))

Let X1 and X2 be a pair of continuous random variables with joint density fX1,X2
. Let X be a

continuous random variable and g be invertible and differentiable with inverse g−1 on the support
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of Y , then

fY (y) = |(g−1)′(y)|fX(g−1(y)) =
1

|g′(g−1(y))|
fX(g−1(y)), y ∈ supp(Y ).

1.3.2 Change of Variables in Higher Dimensions

We now consider bivariate cases (general n dimensional random variables are handled similarly). Let
X1 and X2 be two random variables with joint density function fX1,X2

. The following rule from
calculus provides us a recipe to compute the joint density of transformations of X1 and X2.

Theorem 4 (Change of Variables Formula in 2 Dimensions (Continuous))

Let Y1 = g (X1, X2) and Y2 = h (X1, X2) and suppose the map(
x1

x2

)
7−→

(
g(x1, x2)

h(x1, x2)

)
=

(
y1
y2

)
is invertible. Denote its inverse by (

x1(y1, y2)

x2(y1, y2)

)
.

Then the joint density of (Y1, Y2) is given by

fY1,Y2
(y1, y2) = fX1,X2

(x1 (y1, y2) , x2 (y1, y2)) |J (y1, y2)| ,

on the possible region for (y1, y2), where the Jacobian of the transformation is given by

J (y1, y2) :=
∂(x1, x2)

∂(y1, y2)
:=

∣∣∣∣∣ ∂x1

∂y1

∂x1

∂y2
∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣ = ∂x1

∂y1

∂x2

∂y2
− ∂x1

∂y2

∂x2

∂y1
.

We will apply this formula to compute the distribution of the sums of random variables.

Proposition 2

Let X1 and X2 be two random variables with joint density function fX1,X2
. Define S = X1 +X2.

The density function of S is given by

fS (s) =

∫ ∞
−∞

fX1,X2
(x, s− x) dx. (2)

Proof. Consider the random variable Y1 = X1 and Y2 = X1 + X2. The marginal distribution of Y2

will give the distribution of S. To compute this, we first compute the joint distribution of Y1, Y2,

FY1,Y2
(t1, t2) =

∫∫
Y1(x1,x2)≤t1,Y2(x1,x2)≤t2

fX1,X2
(x1, x2) dx1dx2.

We write this in terms of y1 and y2 using the change of variables(
y1
y2

)
:=

(
x1

x1 + x2

)
which has inverse is given by

x1(y1, y2) = y1, x2(y1, y2) = y2 − y1
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and Jacobian

J(y1, y2) =

∣∣∣∣∣ ∂x1

∂y1

∂x1

∂y2
∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣ =
∣∣∣∣ 1 0
−1 1

∣∣∣∣ = 1.

We conclude that the CDF is given by

FY1,Y2(t1, t2) =

∫∫
Y1(x1,x2)≤t1,Y2(x1,x2)≤t2

fX1,X2(x1, x2) dx1dx2 =

∫ t2

−∞

∫ t1

−∞
fX1,X2(y1, y2−y1) dy1dy2.

Therefore, the CDF of Y2 is given by

FY2(t2) = FY1,Y2(∞, t2) =

∫ t2

−∞

∫ ∞
−∞

fX1,X2(y1, y2 − y1) dy1dy2.

To recover the PDF, we can differentiate with respect to t2 to conclude that

fY2(t2) =

∫ ∞
−∞

fX1,X2(y1, t2 − y1) dy1.

Using the fact that Y2 and S have the same distribution and changing the dummy variables gives our
result.

A special case of this formula arises when X1 and X2 are independent.

Corollary 1

When X1 and X2 are two independent random variables, (2) becomes

fS (s) =

∫ ∞
−∞

fX1 (x) fX2 (s− x) dx (3)

and fS is called convolution of the densities fX1
and fX2

.

Definition 18. A sequence X1, X2, . . . of random variables on (Ω,F ,P) is called independent and
identically distributed (i.i.d.) if the random variables are independent and they have the same
cdf.

The next result states that the sample mean converges to its expected value. This reconciles the
frequentist and the axiomatic approaches to probability.

Theorem 5 (Strong Law of Large Numbers)

Let X1, X2, . . . be an i.i.d. sequence of random variables. Then there exists an event Ω0 ∈ F such
that P(Ω0) = 1 and

1

n

n∑
k=1

Xk(ω) −→ E[X1] as n → ∞, for all ω ∈ Ω0.

In other words, the sample mean converges to the theoretical mean almost surely.

The central limit theorem is, next to the law of large numbers, one of the main pillars of modern
probability and statistics. It states that the distribution of the standardized sample mean has a
universal limit.

Theorem 6 (Central Limit Theorem)

Let X1, X2, . . . an i.i.d. sequence with finite variance σ2 := Var(Xi) and common mean µ := E[Xi].
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Define the standardized sample mean

Ŝn :=
1

σ
√
n

n∑
k=1

(Xk − µ).

Then, for any x ∈ R,
P(Ŝn ≤ x) −→ Φ(x), as n → ∞

where Φ is the cdf ofN(0, 1). In other words, the standardized sample mean converges to a Gaussian
random variable in distribution.

1.3.3 Laplace transform

We now define a generating function for a random variable which encodes the distribution as a real
valued function.

Definition 19. The Laplace transform of a positive random variable X:

LX (t) = E
[
e−tX

]
, t ≥ 0.

The Laplace transform of a positive random variable is sometimes much simpler than its cdf.
Moreover, there is a one-to-one correspondence between a Laplace transform and a cdf. The Laplace
transform technique is also very useful to study the sum of a sequence of positive and independent
random variables.

Proposition 3

Let X1, ..., Xn be independent random variables with Laplace transforms

LXi
(t) = E

[
e−tXi

]
, i = 1, ..., n.

Define the sum S = X1 + · · ·+Xn. Then

LS(t) =

n∏
i=1

LXi (t) .

Proof. By independence, the Laplace transform of S is given by

LS (t) = E
[
e−tS

]
= E

[
e−t(X1+···+Xn)

]
= E

[
n∏

i=1

e−tXi

]
=

n∏
i=1

LXi
(t) .

1.4 Generating random variables with given distribution

1.4.1 The quantile method

There is a nice relationship between general random variables and uniform random variables.

Proposition 4

Let X be a random variable with continuous CDF FX . Then U := FX(X) has a uniform distribu-
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tion on (0, 1). That is,

FU (t) = P(U ≤ t) =


0 if t ≤ 0,

t if 0 < t < 1,

1 if t ≥ 1.

This suggests a way to generate random variables if one can “invert” the CDF.

Definition 20. Let FX be an arbitrary CDF and define the quantile function of X as

F−1X (t) = min{x ∈ R : FX(x) ≥ t}, 0 < t < 1.

Then F−1X (t) will be a t× 100%-quantile for the distribution of X. In particular F←X ( 12 ) is called the
median.

The quantile function can be interpreted as a generalized inverse of FX . If FX is strictly increasing,
then the quantile function is simply the inverse function of FX . The next result allows us to generate
random variables using uniform random variables.

Proposition 5 (Inverse Transform Sampling)

Suppose that U is a random variable with a uniform distribution on (0, 1) and F is an arbitrary
cdf. Then

X := F−1(U)

has cdf F .

Remark 7. This is a generalization of a simple concept. For instance, if we want to generate a flip of
a coin (a Ber(0.5) random variable), then we can sample a number uniformly u from [0.1] and define
x = X(u) = 0 if u ∈ [0, 0.5] and x = X(u) = 1 if u ∈ [0.5, 1].

The effectiveness of this method depends on the efficiency with which F−1 can be computed. If
this is relatively easy, as for exponential or Gumbel distributions, then the method is highly effective,
as only one uniform random variable needs to be generated for each random variable with cdf F . In
many cases. however, the computation of F−1 is difficult or computationally very costly.

1.4.2 The Box–Muller algorithm

The following is method to generate independent normally distributed random variables. It uses the
rotational invariance of normally distributed random variables.

Corollary 2

Let U1 and U2 be two independent random variables with a uniform distribution on (0, 1). Then

X1 :=
√

−2 logU1 cos(2πU2)

X2 :=
√

−2 logU1 sin(2πU2)

are independent N(0, 1)-distributed random variables.

Proof. Suppose X1 and X2 are two independent standard normal random variables. Writing (X1, X2)
in polar coordinates gives rise to two random variables R ≥ 0 and Θ ∈ [0, 2π] such that

R(X1, X2) :=
√

X2
1 +X2

2 Θ(X1, X2) := arctan
(x2

x1

)
.
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where the range arctan is taken to be [0, 2π]. This implies that

X1 = R cosΘ, X2 = R sinΘ.

We want to find the distribution of R and Θ so we can apply inverse transform sampling to generate
these random variables. It suffices to compute

FR,Θ(t1, t2) =

∫∫
0≤R(x1,x2)≤t1,0≤Θ(x1,x2)≤t2

1

2π
e−

x2
1+x2

2
2 dx1dx2

where t1 ≥ 0 and 0 ≤ t2 ≤ 2π since the CDF is trivially 0 for other values. We do a change of variables
to write this integral in terms of r and θ,

x1 = r cos θ, x2 = r sin θ =⇒ dx1dx2

drdθ
=

∣∣∣∣cos(θ) −r sin(θ)
sin(θ) r cos(θ)

∣∣∣∣ = r cos2 θ + r sin2 θ = r

so

FR,Θ(t1, t2) =

∫ t2

0

∫ t1

0

1

2π
e−

r2 cos2 θ+r2 sin2 θ
2 r drdθ =

(∫ t2

0

1

2π
dθ

)(∫ t1

0

e−
r2

2 r dr

)
=

(
t2
2π

)(
1− e

t22
2

)
.

By computing the marginals, we can conclude that for r > 0,

FR(r) = FR,Θ(r, 2π) = 1− e
r
2

and θ ∈ [0, 2π]

FΘ(θ) = FR,Θ(∞, θ) =
θ

2π
.

This implies that R and Θ are independent since

FR,Θ(t1, t2) = FR(t1)FΘ(t2)

Notice that
F−1R (p) =

√
−2 ln(1− p)

and
F−1Θ (p) = 2πp.

Since R and Θ are independent, we can use inverse transform sampling and generate each of them
with respect to independent uniform random variables

R ∼
√

−2 ln(1− U1) ∼
√
−2 logU1 and Θ ∼ 2πU2

where we used the identity U1 ∼ 1− U1.

The previous result provides an algorithm for the exact simulation of N(0, 1)-random variables,
provided that one is able to generate independent uniform random variables (which most computer
systems can).
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1.4.3 Generating random vectors with a multivariate normal distribution

Let n ∈ N be a fixed dimension. We consider the task of generating a n dimensional Gaussian vector.
Recall that in 1 dimension, we can construct X ∼ N(µ, σ2) from a standard Gaussian by Z ∼ N(0, 1)
“standardizing”

X = σZ + µ.

This stability under linear transformations allows us to generate higher dimensional Gaussians.

Definition 21. A random vector

X =

X1

...
Xn

 = (X1, . . . , Xn)⊤

has a multivariate normal distribution if there exist a random vector Z̄ = (Z1, . . . , Zn)⊤ whose
components Z1, . . . , Zn are independent standard normally distributed random variables, a vector
m ∈ Rn and a n× n-matrix A such that

X = AZ+m.

It follows that, for i, j = 1, ..., n,

E[Xi] = mi and Cov(Xi, Xj) = Cov
( d∑

k=1

AikZ
k,

d∑
ℓ=1

AjℓZ
ℓ
)
=

d∑
k=1

AikAjk = Cij

where the covariance matrix C is given by

C = AA⊤.

We say that X has distribution N(m,C) and write X ∼ N(m,C). In particular, Z ∼ N(0, I), where
I is the identity matrix.

Proposition 6

The covariance matrix is symmetric and positive semidefinite.

Proof. Since Cov(Xi, Xj) = Cov(Xj , Xi), the matrix C must be symmetric. Moreover, if y =
(y1, . . . , yd)⊤ ∈ Rn, then

y⊤Cy = E(y⊤(X− E[X])(X− E[X])⊤y) = E(y⊤(X− E[X]))2 = Var(y⊤X) ≥ 0,

and so C has to be positive semidefinite.

Remark 8. Recall that a matrix is positive semidefinite matrix if and only if it has non-negative
eigenvalues. Since real symmetric matrices A are also diagonalizable by orthogonal matrices, if A is
positive semi-definite then it can be written as

A = QDQ⊺

where Q is an orthgonal matrix and D is diagonal with non-negative entries.

Conversely, if C is any given symmetric and positive semidefinite n × n matrix, then there exists
a n × n matrix A such that C = AA⊤. So C is the covariance matrix of some normally distributed
random vector X.
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However, A need not be unique. But a very convenient choice for A is the Cholesky decompo-
sition of C into the form

C = LL⊤,

where the matrix L is a lower triangular matrix,

L =


ℓ11 0 0 0 · · · 0
ℓ21 ℓ22 0 0 · · · 0
ℓ31 ℓ32 ℓ33 0 · · · 0
...

...
. . .

. . .
...

ℓd1 ℓd2 ℓd3 · · · · · · ℓdd


The Cholesky decomposition is unique and available through standard computational software pack-
ages.

1.5 Example Problems

1.5.1 Basic Definitions

Problem 1.1. Suppose two six sided dice are rolled, and the number of dots facing up on each die is
recorded.

1. Write down the sample space S.

2. Write down, as a set, the event A = “The sum of the dots is 7”.

3. Write down, as a set, the event Bc, where B = “The sum of the numbers is at least 4”.

4. Write down, as a set, the events A ∩Bc and A ∪Bc.

Solution 1.1.

1. The sample space for a pair of dice is the a pair of the outcomes of each die roll

S = {1, . . . , 6} × {1, . . . , 6} = {(x, y) : x, y ∈ {1, 2, . . . , 6}}

2. We can simply write down all the combinations

A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

3. If B = {sum is at least 4} then Bc = {sum is at most 3}, so

Bc = {(1, 1), (1, 2), (2, 1)}

4. It follows that A ∩Bc = ∅ and

A ∪Bc = {1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (1, 1), (1, 2), (2, 1)}

Problem 1.2. Show the monotonicity property of probability,

if A ⊆ B then P(A) ≤ P(B).
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Solution 1.2. This follows directly from the axioms. If A ⊆ B, then B = A ∪ A \ B and the sets A
and A \B are disjoint. Therefore, by countable additivity,

P(B) = P(A) + P(A \B) ≥ P(A)

since P(A \B) ≥ 0 by the non-negativity property.

Problem 1.3. Show that the axiomatic definition of a probability implies that

0 ≤ P(A) ≤ 1

for any event A.

Solution 1.3. Suppose for the sake of contradiction that P(A) > 1 for some event A. By the monon-
tonicity property, since A ⊆ S,

P(S) ≥ P(A) > 1

which contradicts the fact that P(S) = 1. Therefore, P(A) ≤ 1.

Problem 1.4. Show that the axiomatic defintiion of a probability implies that

P(A) = 1− P(Ac)

for any event A.

Solution 1.4. Notice that A∪Ac = S and A and Ac are disjoint. From finite additivity, we conclude
that

P(A) + P(Ac) = P(S) = 1 =⇒ P(A) = 1− P(Ac).

Problem 1.5. Suppose that A ⊆ B. Show that P(A) ≤ P(B).

Solution 1.5. This property is called monotonicity. By the law of total probability,

P(B) = P(A ∩B) + P(Ac ∩B).

Since A ⊆ B, we have P(A ∩B) = P(A) and P(Ac ∩B) ≥ 0, so

P(A) ≤ P(B).

Problem 1.6. Show that for arbitrary events A1, A2, . . . , An,

P(∪n
k=1Ak) ≤

n∑
k=1

P(Ak).

Solution 1.6. This is called the union bound. By the inclusion exclusion principle, we see that

P(A ∪B) = P(A) + P(B)− P(A ∩B)

since P(A ∩B) ≥ 0. The general statement then follows by (strong) induction. We have

P(A1 ∪A2 ∪An−1 ∪An) = P((A1 ∪A2 ∪An−1) ∪An)

≤ P(A1 ∪A2 ∪An−1) + P(An)

≤
n−1∑
k=1

P(Ak) + P(An) =

n∑
k=1

P(Ak).
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Remark 9. It is true that equality is attained if A1, . . . , An are mutually exclusive. However, we can
have equality even if A1, . . . , An are not mutually exclusive. We can consider the distribution on the
two points {a, b} such that P({a}) = 0 and P({b}) = 1. Then A = {a, b} and B = {a} satisfy the
union bound, but they are not mutually exclusive.

Problem 1.7. Suppose that A and B are independent.

1. Show that Ac and Bc are independent.

2. Show that A and Bc are independent.

Solution 1.7.

1. We check the definition,

P(Ac ∩Bc) = 1− P((Ac ∩Bc)c) = 1− P(A ∪B) De Morgan’s law

= 1− P(A)− P(B) + P(A ∩B) inclusion exclusion

= 1− P(A)− P(B) + P(A)P(B) independence

= (1− P(A))(1− P(B))

= P(Ac)P(Bc).

2. We check the definition,

P(Ac ∩B) = P(B)− P(A ∩B) = P(B)− P(A)P(B) independence

= (1− P(A))P(B)

= P(Ac)P(B).

1.5.2 Random Variables

Problem 1.8. Let X,Y, Z be i.i.d. Rademacher random variables, i.e.

P(X = ±1) =
1

2
.

Show that XY, Y Z,ZX are pairwise independent but not mutually independent.

Solution 1.8. To check pairwise independence, we see that

P(XY = ±1, Y Z = ±1) =
1

4
= P(XY = ±1)P(Y Z = ±1)

The other cases are similar because any two elements from XY, Y Z,ZX share exactly one common
random variable. However, they are not mutually independent because

P(XY = 1, Y Z = 1, ZX = 1) =
1

4
̸= 1

8
= P(XY = ±1)P(Y Z = ±1)P(ZX = ±1)

since {XY = 1, Y Z = 1, ZX = 1} happens only when all of X, Y and Z have the same sign.
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Problem 1.9. Let X be a random variable takes values 0 and 1 with equal probability,

P(X = 0) = P(X = 1) =
1

2
.

Let Y be a random variable that is independent of X and takes values −1 and 1 with equal probability,

P(Y = −1) = P(Y = 1) =
1

2
.

We let Z = XY . Show that Z and X are uncorrelated, but not independent.

Solution 1.9. First, note that

E[Z] = E[XY ] = E[X] · E[Y ] =
1

2
· 0 = 0.

Therefore,

Cov (X,Z) = E [XZ]− E [X]E [Z] = E[X2]E [Y ] = 0.

On the other hand, we have Z2 = X and hence, for g1(t) = t and g2(t) = t2,

E[g1(X) · g2(Z)] = E[X2] =
1

2
̸= 1

4
= E[g1(X)] · E[g2(Z)].

Therefore, by Proposition 1, X,Z are not independent. Equivalently, since g1(X) = X and g2(Z) =
Z2 = X are not independent, we conclude that X and Z cannot be independent by Proposition 2.

Problem 1.10. Prove the following properties for the quantile function

1. For all x ∈ R, F−1X (FX(x)) ≤ x

2. For all p ∈ [0, 1], FX(F−1X (p)) ≥ p

3. F−1X (p) ≤ x ⇔ p ≤ FX(x)

4. F−1X (p) is non-decreasing and left-continuous (except for the endpoints p = 0 or p = 1)

Solution 1.10.

1. We have
F−1X (FX(x)) = inf

t∈R
{FX(t) ≥ FX(x)} ≤ x

since x ∈ {t ∈ R : FX(t) ≥ FX(x)}.

2. Since FX is right continuous and increasing we have {FX(x) ≥ p} is a closed set, so it attains its
infimum. Therefore, cp ∈ {FX(x) ≥ p} so

FX(F−1X (p)) = FX(cp) ≥ p.

3. On one hand, F−1X (p) ≤ x implies that x ∈ {t : FX(t) ≥ p} so p ≤ FX(x). On the other
hand, if p ≤ FX(x) then x ∈ {t : FX(t) ≥ p} so F−1X (p) ≤ x since F−1X (p) is the infimum of all
{t : FX(t) ≥ p}.
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4. Suppose that p1 ≤ p2. Then

F−1X (p1) = inf
x∈R

{FX(x) ≥ p1} ≤ inf
x∈R

{FX(x) ≥ p2} = F−1X (p2)

since {FX(x) ≥ p1} ⊆ {FX(x) ≥ p2}, so F−1X is non-decreasing.

To see left continuity, notice that monotone functions can only have jump discontinuities, so it
suffices to show that supq<p F

−1
X (q) = F−1X (p). For each q < p and ϵ > 0, we have by definition

of the supremum

sup
q<p

F−1X (q) + ϵ ≥ F−1X (q)
(3)
=⇒ FX(sup

q<p
F−1X (q) + ϵ) ≥ q.

So taking ϵ → 0 by right continuity of FX implies that FX(supq<p F
−1
X (q)) ≥ q for all q < p so

FX(supq<p F
−1
X (q)) ≥ p. Property 3 above implies that

sup
q<p

F−1X (q) ≥ F−1X (p).

This combined with monotonicity supq<p F
−1
X (q) ≤ F−1X (p) implies that supq<p F

−1
X (q) = F−1X (p)

as required.

Problem 1.11. Consider the random variable X with

P(X = 1) = 1/6, P(X = 2) = 2/6 P(X = 3) = 3/6.

Sketch the CDF of X and compute F−1X (p) for p ∈ (0, 1).

Solution 1.11.

1. The cumulative distribution function is

FX(x) =


0, x < 1,
1
6 , 1 ≤ x < 2
1
2 , 2 ≤ x < 3,

1 3 ≤ x

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
(x

)

2. To compute the quantile function, we notice that the discontinuities of the CDF occur at
(1, 1

6 ), (2,
1
2 ), (3, 1). Therefore, the discontinuities for the quantile function occur at ( 16 , 1), (

1
2 , 2), (1, 3).

Extending this to make the function left continuous implies

F−1X (p) = cp = inf{x ∈ R : FX(x) ≥ p} =


1, 0 < p ≤ 1

6

2, 1
6 < p ≤ 1

2

3, 1
2 < p ≤ 1.
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Remark 10. The end points of the intervals in the quantile function are the same as the p
values of the CDF at the jumps. Furthermore, the < inequality is always on the left of the x
and the ≤ inequality is always to the right of the x. This implies the quantile function is left
continuous. Furthermore, the value of the quantile function on each interval is equal to the value
of the quantile function at the right endpoint .

Remark 11. To find individual points of the quantile at p, we find the smallest point where the
graph FX(x) lies on or above the horizontal line p. This is demonstrated for p ∈ (0, 1/6] (left),
p ∈ (1/6, 1/2] (middle) and p ∈ (1/2, 1] (right).

x

F
(x

)

p
1/

2
1

cp =  1 2 3

x

F
(x

)

1/
6

p
1/

2
1

1 cp =  2 3

x

F
(x

)

1/
6

1/
2

p
1

1 2 cp =  3

Problem 1.12. Suppose that X has CDF FX . If U is uniform on [0, 1], prove that F−1X (U) has the
same distribution as X.

Solution 1.12. Let FY denote the CDF of the random variable Y = F−1X (U). We have using the
properties of the quantile function (Problem 1.10) that

F−1X (p) ≤ x ⇔ p ≤ FX(x).

So we can conclude that
{F−1X (U) ≤ x} = {U ≤ FX(x)}

Therefore, the CDF of Y is

FY (x) = P(F−1X (U) ≤ x) = P(U ≤ FX(x)) = FX(x).

Problem 1.13. Let X be an exponential random variable with mean θ, and define Y = X
1
s for s > 0.

What is the distribution of Y ?

Solution 1.13. It follows that for y > 0

FY (y) = P
(
X

1
s ≤ y

)
= P (X ≤ ys)

= FX (ys)

= 1− e−
ys

θ

= 1− e−(
y
α )

s

, y ≥ 0,

where α = θ
1
s . Hence, Y follows a Weibull distribution with parameters α and s.
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Problem 1.14. Suppose F (x) = 0 if x ≤ 0 and F (x) = 1− e−λx for x > 0, where λ > 0 (that is, F is
the cdf of an exponential distribution with parameter λ and mean 1/λ). What is the quantile function
of X? How can you generate a realization of X using a uniform random variable?

Solution 1.14. We have

F−1(t) = − 1

λ
log(1− t).

So if U has a uniform distribution on (0, 1), then − 1
λ log(1− U) will have an exponential distribution

with parameter λ.

Problem 1.15. Compute the Laplace transform of a Poisson distributed random variable with pa-
rameter λ > 0.

Solution 1.15. Let X have a Poisson distribution with parameter λ > 0. Then

LX (t) = E
[
e−tX

]
=

∞∑
k=0

e−tk · P[X = k]

=

∞∑
k=0

e−tke−λ
λk

k!
= e−λ

∞∑
k=0

(e−tλ)k

k!

= e−λee
−tλ = e−λ(1−e

−t)

Problem 1.16. If X ∼ Poi(λ) and Y ∼ Poi(µ) are independent, what is the distribution of X + Y ?

Solution 1.16. We know that LX(t) = e−λ(e
t−1) and LY (t) = e−µ(e

t−1). Since X and Y are inde-
pendent, the Laplace transform of X + Y is

LX+Y (t) = LX(t)LY (t) = e−λ(e
t−1e−µ(e

t−1) = e−(λ+µ)(et−1)

which we recognize as the Laplace transform of a Poi(λ+ µ) random variables. By uniqueness of the
Laplace transform, we conclude X + Y ∼ Poi(λ+ µ).

Problem 1.17. A course is evaluated with a midterm exam and a final exam. The midterm has
weight α and the final has weight 1 − α, where α ∈ [0, 1]. Assuming the percentage scores of a given
student in both exams are independent and identically distributed [0, 100]-valued random variables, is
it preferable for the student to write both exams, or should they instead get VIFs and transfer the
weight of the midterm to the final?

Solution 1.17. Let M denote the result of the midterm and F the result of the final. Both are
independent random variables with identical distribution on [0, 100]. The final grade is either Fα :=
αM + (1− α)F or F0 := F , depending on whether or not the midterm exam is taken. Clearly,

E[Fα] = αE[M ] + (1− α)E[F ] = E[F ] = E[F0].

So the expectations in both cases are the same. Next,

Var(Fα) = Var(αM + (1− α)F ) = Var(αM) + Var((1− α)F )

=
(
α2 + (1− α)2

)
Var(F0) =

(
1 + 2α2 − 2α

)
Var(F0)

If 0 < α < 1, the right-hand side is strictly smaller than Var(F0). So from that point of view it is
better to write the midterm exam.
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