
April 1, 2025 ACTSC 624 – Week 13 Justin Ko

1 Stochastic Differential Equations

Stochastic differential equations is the stochastic calculus counterpart of ordinary differential equations.
In these types of problems we are given a differential equations involving stochastic processes, and
we want to find the stochastic process that satisfies these differential equations. In the following
subsections, we go over some applications of Itô’s lemma to solve some classical SDEs.

1.1 Geometric Brownian Motion

We want to find a stochastic process that models the behavior of a stock price. Notice that Wt is not
a realistic model of a stock price since it can take both positive and negative values. At the very least,
a model for a stock price should always be non-negative, and its movement should be proportional to
its current value.

Definition 1.1. Given a standard Brownian motion {Wt}t≥0, a stochastic process {St}t≥0 is called a
geometric Brownian motion if it satisfies the stochastic differential equation

dSt = σSt dWt + µSt dt (1)

for some constants σ ≥ 0 and α ∈ R.

In (1), the term µSt dt induces a proportionally constant rate of average growth. The term σSt dWt

induces proportionally constant random fluctuations. This is a reasonable model for a stock price for
two reasons:

� The microscopic fluctuations of an asset price over a very short time interval [t, t+ε] are approx-
imately proportional to St,

� the microscopic fluctuations of the value of an investment of x units of cash made at time t will
only depend on x and not on St.

This implies that for an x amount of cash, one can buy ξ = x/St shares. The fluctuation of the value
will thus be

instantaneous change in value = ξ dSt = x · dSt

St
= x · σ dWt + x · µdt.

The SDE in (1) can be explicitly solved (Problem 1.1).

Proposition 1.2

The solution to (1) is

St = S0e
σWt+(µ−σ2

2 )t.

Remark 1.3. This equation should remind us of the deterministic growth equation. Indeed, the ODE

df(t) = kf(t) dt ⇐⇒ df

dt
= kf(t)

is solved by separating variables, which gives us f(t) = f(0)ekf(t) which agrees with the solution of
geometric Brownian motion up to a correction term.

We often call µ the drift and σ the volatility. By taking logarithms, we have

logSt = logS0 + σWt +
(
µ− σ2

2

)
t,
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where the right-hand side is normally distributed with mean logS0 + (µ− σ2

2 )t and variance σ2t.
Hence, St has a log-normal distribution. Furthermore, we expect to see fluctuations that are
constant in time and a linear trend in log stock prices. We have shown several times that

Zt = S0e
σWt−σ2

2 t

is a martingale. This means that the S0e
σWt−σ2

2 t has no tendency to go up or down so

St = S0e
σWt−σ2

2 teµt

has a mean rate of return of the stock is µ. A generalization of geometric Brownian motion is given in
Problem 1.1.

Figure 1: DJIA in absolute units vs. St = S0e
σWt+(µ−σ2

2 )t. For the DJIA, fluctuations are much
stronger when the value of the index is high

Figure 2: DJIA in logarithmic units vs. Yt = Y0 + σWt + (µ− σ2

2 )t. The historic development of the
DJIA on a logarithmic scale has a linear trend.

1.2 Vasicek Interest Rate Model

We now introduce a stochastic process that models the behavior of interest rates.

Definition 1.4. Given a standard Brownian motion {Wt}t≥0, a stochastic process {Rt}t≥0 is called
an interest rate process if it satisfies the stochastic differential equation

dRt = σ dWt + (α− βRt) dt (2)

for some constants σ, α, β > 0.
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This is a mean reverting model for the interest rate. In particular, if R(t) > α
β then the drift is

negative so R(t) is pushed down towards α
β . The opposite happens if R(t) < α

β . One downside of this
model is that the interest rates can be negative. More complicated interest rate models exist, but they
do not necessarily admit a closed form. The SDE in (2) can be solved explicitly (Problem 1.2)

Proposition 1.5

The solution to (2) is

R(t) = e−βtR(0) +
α

β
(1− e−βt) + σe−βt

∫ t

0

eβs dWs

Remark 1.6. This equation should remind us of the deterministic linear equation. Indeed, the ODE

df(t) = (α− βf(t))dt ⇐⇒ df

dt
− βf = α

is solved using the integrating factor e−βt, which gives us f(t) = e−βtf(0) + α
β (1− e−βt) which agrees

with the solution of interest model up to a correction term.

1.3 Example Problems

1.3.1 Proofs of Main Results

Problem 1.1. Solve the SDE
dSt = σSt dWt + µSt dt.

Solution 1.1. Recall that the solution to the ODE

dy

dt
= ky (3)

can be solved by separating the vairables,

dy

y
= kdt =⇒ d ln(y) = kdt =⇒ ln(y(t))− ln(y(0)) = kt =⇒ y(t) = y(0)ekt.

The SDE looks very similar to (3). We can apply Itô’s lemma (using the shorthand in differentials) to
see that

d log(St) =
1

St
dSt −

1

2

1

S2
t

dStdSt

= σ dWt + µdt− 1

2
σ2 dt

because
dSt = σSt dWt + µSt dt

and
dStdSt = σ2S2

t dWtdWt + 2µσS2
t dWtdt+ µ2S2

t dtdt = σ2S2
t dt.

Therefore, we can integrate to see that

log(St)− log(S0) = σWt +

(
µ− 1

2
σ2

)
t =⇒ St = S0e

σWt+(µ−σ2

2 )t.
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Problem 1.2. Solve the SDE
dRt = σ dWt + (α− βRt) dt

Solution 1.2. Recall that the solution to the linear ODE

dy

dt
+ βy = α (4)

can be solved using the integrating factor eβt

dy

dt
eβt + βyeβt = αeβt =⇒ d(yeβt) = αeβt =⇒ yeβt − y(0) =

α

β
(eβt − 1)

so
y(t) = e−βty(0) +

α

β
(1− eβt)

The SDE looks very similar to (4). We can apply Itô’s lemma (using the shorthand in differentials) to
f(x, t) = xeβt

d(Rte
βt) = βRte

βt dt+ eβt dRt +
1

2
· 0 dRtdRt

= βRte
βt dt+ σeβt dWt + (α− βRt)e

βt dt

= σeβt dWt + αeβt dt

because
dRt = σ dWt + (α− βRt) dt

Therefore, we can integrate to see that

Rte
βt −R0 = σ

∫ t

0

eβs dWs +
α

β
(eβt − 1)

which can be rearranged to give

R(t) = e−βtR(0) +
α

β
(1− e−βt) + σe−βt

∫ t

0

eβs dWs.
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2 Black–Scholes Model

We now derive one of the fundamental results in option pricing. The Black–Scholes model gives
the price of a European call option.

Let St be a stock price. Suppose that it can be modeled by a Geometric–Brownian motion, that
is, St satisfies the SDE (1)

dSt = σSt dWt + µSt dt

which has explicit solution by Proposition 1.2

St = S0e
σWt+(µ−σ2

2 )t.

Suppose that the risk free interest rate is given by r. An option is a financial contract that gives the
holder a choice of what to do at a specific date called the maturity. A European call option gives the
holder a choice to buy a particular stock S at price K at maturity. That is at maturity, the holder
will make {

S −K S > K

0 S < K

since if S > K the holder can resell the stock on the market to make S −K, and if S ≤ K, then the
holder will not exercise the option. Mathematically, we can think of the call option as a function of
the stock price with fixed terminal value.

Definition 2.1. Let T > 0. A European call option with strike price K and maturity T is a
function of a stochastic process with payoff

c(T, ST ) = (ST −K)+ = max(St −K, 0).

This option lowers the risk of investing in a stock since it guarantees the maximum price you can
buy a stock at. Of course, such a contract has some value, so our goal is to determine what the fair
value of buying this contract.

Let c(t, x) denote the value of the call option at time t when the value of the stock satisfies St = x.
We do not have access to St in the future, but by knowing c(t, x), we will get a formula for the call
option as a function of the future stock price. The Black–Scholes formula gives the price of the call
option at all times as a function of the underlying stocks drift µ, volatility σ2, the risk free interest
rate r, and the time to maturity T − t.

Theorem 2.2 (Price of a European Call)

The price of the European call option c(t, x) at time t < T with stock price St = x is,

c(t, x) = xΦ(d+(T − t, x))−Ke−r(T−t)Φ(d−(T − t, x))

where Φ is the cdf of a standard normal distribution and

d±(t, x) =
1

σ
√
t

[
ln

x

K
+ (r ± σ2

2
)t

]
.

Remark 2.3. As a simple sanity check, we have that

lim
t→T

c(t, St) =

{
STΦ(+∞)−KΦ(+∞) ST > K

STΦ(−∞)−KΦ(−∞) ST < K
=

{
ST −K ST > K

0 ST < K

since limt→T d±(t, St) = +∞ if ST > K and limt→T d±(t, St) = −∞ if St < K.
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2.1 Derivation of the Black–Scholes Model

Our strategy to determine the price is to design an financial instrument called a replicating portfolio
made up of stocks and risk free bonds. If there are no arbitrage opportunities, then the price of the
replicating portfolio and the European call option should have the same value.

2.1.1 The Evolution of the Replicating Portfolio

We want to make a replicating portfolio that is self financing, i.e. after the initial purchase of the
replicating portfolio, we are unable to add or withdraw any money until maturity.

Suppose that we can buy a risk free bond Bt with interest rate r. The price of the bond satisfies
the ODE

dBt = rBt dt

which has solution Bt = B0e
rt. Let X(t) denote the value of a self-financing portfolio. At time t, we

hold ∆(t) shares of the stock at time t, so the value of the portfolio in stocks is ∆(t)St. The remaining
balance Bt = Xt −∆(t)St is invested in bonds. In summary,

X(t) = ∆(t)St +Bt = ∆(t)St + (X(t)−∆(t)St).

The differential satisfied by the replicating portfolio is

dX(t) = ∆(t) dSt + dBt = ∆(t) dSt + r(X(t)−∆(t)St) dt

= ∆(t)(σSt dWt + µSt dt) + r(X(t)−∆(t)St) dt

= rX(t) dt+∆(t)(µ− r)St dt+∆(t)σSt dWt. (5)

Remark 2.4. The first term can be interpreted appearing above is the underlying rate of return on
the portfolio, the second term is the risk premium for investing in a stock, and the last term is the
volatility.

2.1.2 The Evolution of the Call Option

Recall that c(t, St) is the value of the call option at time t and c(t, x) is a non-random function of the
stock price St. By Itô formula applied to c(t, x) and (1) we have

dc(t, St) = ct(t, St)dt+ cx(t, St)dSt +
1

2
cxx(t, St)dStdSt

=

(
ct(t, St) + cx(t, St)µSt +

σ2

2
cxx(t, St)S

2
t

)
dt+ cx(t, St)σSt dWt. (6)

2.1.3 Equating the Evolutions

We will require that the present value of the replicating portfolio to be equal to the value of the option
at all t, since if it were not the case then an arbitrage opportunity exists (we can buy the lower value
one and sell the higher value one to make risk free profit). That is, we need that for all t < T ,

e−rtX(t) = e−rtc(t, St).

This happens if its initial value X(0) = c(0, S0) and its discounted evolution satisfy

d(e−rtX(t)) = d(e−rtc(t, St)).

Applying Itô’s lemma (or the product rule), this implies that

−re−rtX(t) dt+ e−rt dX(t) = −re−rtc(t, St) dt+ e−rt dc(t, St).
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where we used the fact that dtdX(t) = 0 and dtdc(t, St) = 0. Substituting the differentials computed
in (5) and (6) implies that

− rX(t) dt+ (rX(t) dt+∆(t)(µ− r)St dt+∆(t)σSt dWt)

= −rc(t, St) dt+

(
ct(t, St) + cx(t, St)µSt +

σ2

2
cxx(t, St)S

2
t

)
dt+ cx(t, St)σSt dWt.

In order for the coefficients of the dWt terms to cancel, we must have

∆(t) = cx(t, St)

which is called the delta-hedging rule. Substituting this value for ∆(t) simplifies the coefficients of the
dt term to give

−rc(t, St) + ct(t, St) + rStcx(t, St) +
1

2
σ2S2

t cxx(t, St) = 0

which is called the Black–Scholes PDE. Solving this PDE subject to the terminal condition that
c(T, ST ) = (ST −K)+ will give us the formula for c(t, x),

Remark 2.5. Investing X(0) = c(0, S0) at the start and buying cx(t, St) units of the stock in the
portfolio while investing the remainder into a risk free bond will replicate the call option.

2.1.4 Solving the Black–Scholes PDE

Since the Black–Scholes PDE must be valid for all values of St, it suffices to solve{
−rc(t, x) + ct(t, x) + rxcx(t, x) +

1
2σ

2x2cxx(t, x) = 0 0 < t < T, x > 0

c(T, x) = (x−K)+ x > 0
(7)

To find a unique solution, we also have to add some boundary conditions. At x = 0, (7) implies that

−rc(t, 0) = ct(t, 0) 0 < t < T

This is a standard growth ODE, so it has the solution c(t, 0) = c(0, 0)e−rt. Since c(T, 0) = (0−K)+ = 0,
we must have

0 = c(T, 0) = c(0, 0)e−rT =⇒ c(0, 0) = 0,

which means that we require c(t, x) = 0 to be 0 for all t ∈ [0, T ]. To figure out the boundary condition
at x = ∞, notice that when x is very large, then the payout at time T is very likely to be x−K. To
replicate a portfolio that pays ST − K at maturity at time t, you have to buy one stock at price St

stock and sell the present value e−r(T−t)K of risk free bond. In particular, we must have

lim
x→∞

[c(t, x)− (x− e−r(T−t)K)] = 0.

Therefore, we need to solve the PDE with boundary conditions
−rc(t, x) + ct(t, x) + rxcx(t, x) +

1
2σ

2x2cxx(t, x) = 0 0 < t < T, x > 0

c(T, x) = (x−K)+ x > 0

c(t, 0) = 0 0 ≤ t ≤ T

limx→∞[c(t, x)− (x− e−r(T−t)K)] = 0 0 ≤ t ≤ T.

(8)

From here, one can check that the function in Theorem 2.2 solves this PDE by differentiating. We
provide a probabilistic argument for how to compute the present value c(0, x) in Problem 2.1.
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2.2 Example Problems

Problem 2.1. Find the solution to (8) at t = 0. In particular, find the price c(0, S0) of the European
call option.

Solution 2.1. We first do some change of variables to simplify this problem. If we define

u(t, x) = er(T−t)c(t, e−r(T−t)x), (9)

then one has that by (8)

ut(t, x) +
σ2

2
x2uxx(t, x)

= −rer(T−t)c(t, e−r(T−t)x) + er(T−t)ct(t, e
−r(T−t)x) + er(T−t)(e−r(T−t)x)cx(t, e

−r(T−t)x)

+
σ2

2
er(T−t)(xe−r(T−t))2cxx(t, e

−r(T−t)x)

= er(T−t)(−rc(t, e−r(T−t)x) + ct(t, x) + r(e−r(T−t)x)cx(t, e
−r(T−t)x) +

1

2
σ2(e−r(T−t)x)2cxx(t, e

−r(T−t)x))

= 0

and
u(T, x) = er(T−T )c(t, er(T−T )x) = c(T, x) = (x−K)+

Therefore, we can conclude that u satisfies the PDE{
ut(t, x) +

σ2

2 x2uxx(t, x) = 0 0 < t < T, x > 0

u(T, x) = (x−K)+.
(10)

We will solve u using tools from probability theory. Notice that using (1) that u(t, St) satisfies the
differential

d(u(t, St)) = ut(t, St) dt+ ux(t, St) dSt +
1

2
uxx(t, St)dStdSt

= ut(t, St) dt+ ux(t, St)(σSt dWt + µSt dt) +
1

2
σ2S2

t uxx(t, St) dt

= ux(t, St)(σSt dWt + µSt dt)

since by (10)

ut(t, St) +
1

2
σ2S2

t uxx(t, St) = 0.

Furthermore, we must also have that (10) holds for all µ, so it must hold for µ = 0. In this simplified
case, we have that

du(t, St) = ux(t, St)σSt dWt =⇒ u(t, St)− u(0, S0) =

∫ t

0

ux(s, Ss)σSs dWs

so in particular, u(t, St) is a martingale since u(0, S0) is not random. Therefore, we must have that
for all t ∈ [0, T ],

E[u(t, St)] = u(0, S0)

Taking t = T implies that by Proposition 1.2

u(0, S0) = E[(ST −K)+] = E[(S0e
σWT−σ2

2 T −K)+]
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Since Wt ∼ N(0, t), this expected value can be computed by explicitly by completing the square and
a change of variables to give

u(0, S0) = E[(S0e
σWT−σ2

2 T −K)+]

=

∫ ∞

−∞

(
S0e

σx−σ2

2 T −K

)
+

1√
2πT

e−
x2

2T dx

=

∫ ∞

−d̃−(T,S0)

(
S0e

σ
√
Tx−σ2

2 T −K

)
1√
2π

e−
x2

2 dx

= S0e
−σ2

2 T e
σ2

2 T

∫ ∞

−d̃−(T,S0)

1√
2π

e−
(x−

√
Tσ)2

2 dx−
∫ ∞

−d̃−(T,S0)

K
1√
2π

e−
x2

2 dx

= S0

∫ ∞

−d̃−(T,S0)−σ
√
T

1√
2π

e−
x2

2 dx−
∫ ∞

−d̃−(T,S0)

K
1√
2π

e−
x2

2 dx

= S0Φ(d̃+(T, S0))−KΦ(d̃−(T, S0))

where Φ is the cdf of a standard normal distribution and

d̃±(T, x) =
1

σ
√
T

[
ln

S0

K
± σ2

2
T

]
.

Using the fact that c(t, x) = e−r(T−t)u(t, er(T−t)x) by (9) implies that

c(0, S0) = e−rTu(0, erTS0) = S0Φ(d+(T, x))−Ke−rTΦ(d−(T, S0))

where Φ is the cdf of a standard normal distribution and

d±(t, S0) =
1

σ
√
T

[
ln

S0

K
+ (r ± σ2

2
)T

]
.
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