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1 Brownian Motion

In this section, we will introduce the best known continuous time stochastic process called a Brownian
motion. Unlike the DTMC and CTMC we have seen before, which required discrete state spaces, this
process will have continuous sample paths.

Definition 1.1. A stochastic process {Wt}t≥0 is called a (standard) Brownian motion if it satisfies
the following conditions:

1. W0 = 0.

2. For each ω ∈ Ω, the sample path t 7−→ Wt(ω) is continuous.

3. It has independent increments, i.e., for 0 = t0 < t1 < · · · < tm,

Wt1 −Wt0 , Wt2 −Wt1 , . . . , Wtm −Wtm−1

are independent.

4. Wt −Ws has law N(0, t− s) for 0 ≤ s < t.

Remark 1.2. We have the following direct consequences,

1. Since W0 = 0, (3) implies in particular that Ws and Wt −Ws are independent for 0 < s < t.

2. Condition (4) implies that W has stationary increments. In particular Wt = Wt − W0 has
distribution N(0, t).

Sample paths of three realizations of Brownian motion is displayed below:

Remark 1.3. It is possible to construct Brownian motion from a rescaled simple random walk
{Xn}n≥0 (i.e., the increments X1 − X0, . . . , Xn − Xn−1 are independent Rademacher random vari-
ables with P(Xn −Xn−1 = ±1) = 1/2). To this end, let

W
(n)
t :=

1√
n
X⌊nt⌋

Then one can show that W
(n)
t converges to Brownian motion as n → ∞.
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This definition is quite similar to the Poisson process, in the sense that they both independent
increments with distribution given by a well known probability distribution. There are two main
differences are

� continuity: Brownian motion has continuous sample paths while Poisson processes are a counting
process with discontinuities at the jumps;

� distribution of increments: the increments of a Brownian motion are normally distributed with
variance depending on the length of the interval while the increments of a Poisson process are
Poisson distributed with variance depending on the length of the interval.

Recall that Gaussian random vectors are completely determined by its mean and covariance matrix.
Naturally, Gaussian processes are also characterized by its mean and covariance functions.

Definition 1.4. The covariance function of a stochastic process Xs is given by

K(s, t) = Cov(Xs, Xt) = E[(Xs − E[Xs])(Xt − E[Xt])]

The computation for Brownian motion is simple (see Problem 1.1). This gives us the following
alternative definition of Brownian motion.

Definition 1.5. Brownian motion is a centered Gaussian process on R+ with continuous sample paths
and covariance function

K(s, t) = min(s, t).

Remark 1.6. Recall that a Gaussian process (Xt)t≥0 is a stochastic process with jointly Gaussian
points, i.e. for every finite set of indices t1, . . . , tn, we have

(Xt1 , . . . , Xtn)

is a multivariate Gaussian.

To conclude this section, we introduce a more general notion of Brownian motion, which takes into
consideration different variances and means.

Definition 1.7. If W is a standard Brownian motion as in Definition 1.1, x0, µ ∈ R and σ > 0, then

x0 + σWt + µt

is called a Brownian motion with start in x0, volatility σ, and drift µ. Changing the volatility
of Brownian motion is similar to changing the intensity of a Poisson process.

1.1 Properties of Brownian Motion

In the following, we let
Ft = FW

t = σ(Ws : s ≤ t), t ≥ 0,

be the natural filtration of the Brownian motion W . The fact that W has independent increments and
Remark 1.2 1 imply that for u > t the increment Wu − Wt is independent of Ft. The independent
increments implies that Brownain motion is a Markov process.

Proposition 1.8

Brownian motion satisfies the Markov property:

P (Wt ∈ A | Fs) = P (Wt ∈ A |Ws) for all A ⊂ R and s ≤ t.

The increments are also centered, so we have that Brownian motion is also a martingale.
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Proposition 1.9

Brownian motion is a martingale.

We will now state several interesting properties about the behavior of Brownian motion. The proofs
are a bit technical and require background that is slightly beyond the scope of this course, so they will
be skipped.

The first result is a law of large numbers results that describes the long run behavior of Brownian
motion. We have that Brownian motion grows sub-linearly.

Proposition 1.10

Let Wt be a Brownian motion. We have

lim
t→∞

1

t
Wt = 0

almost surely.

Remark 1.11. The precise asymptotics is given by a result called the law of iterated logarithms. We
have

lim sup
t→∞

Wt√
2t log log t

= 1

almost surely.

The oscillations of Brownian motion are so rapid that although it’s sample paths are continuous,
it is not a smooth function.

Theorem 1.12

With probability one, the function t 7→ Wt is nowhere differentiable.

A natural question is if there is another way to make precise how rapid the oscillations of Brownian
motion is. A natural way to measure the oscillations is a quantity called the total variation.

Definition 1.13. Let Π = {t0, . . . , tn} be a partition of [0, T ] such that

0 = t0 < t1 < · · · < tn = T.

If we let ∥Π∥ = maxi(ti+1− ti) denote maximal step size partition. The total variation of a function
f on the interval [0, T ] is given by

V1(f ; 0, T ) = lim
∥Π∥→0

n−1∑
i=0

|f(ti+1)− f(ti)|

where the limit is taken as the number of points in the partition tend to infinity and the maximal step
size goes to 0. A function is of bounded variation if its total variation is finite.

Remark 1.14. If f has a continuous derivative, then the total variation is simply the “arc length” of
a 1 dimensional curve,

V1(f ; 0, T ) =

∫ T

0

|f ′(t)| dt.

In particular, differentiable functions with bounded derivatives have finite total variation.

One can show that Brownian motion has infinite total variation.
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Proposition 1.15

For T > 0,

V1(Wt; 0, T ) = lim
∥Π∥→0

n−1∑
i=0

|Wti+1 −Wti | = ∞.

That is, W has infinite total variation.

This is somewhat expected. Brownian motion is not as nice as a smooth function, so its oscillations
are more rapid. The right notion to measure how rapid these oscillations are is quadratic variation.

Definition 1.16. The quadratic variation of a function f on the interval [0, T ] is given by

V2(f ; 0, T ) = lim
∥Π∥→0

n−1∑
i=0

|f(ti+1)− f(ti)|2

where the limit is taken as the number of points in the partition tend to infinity and the maximal step
size goes to 0. We sometimes use the notation [f, f ]T = [f ]T to denote the quadratic variation of a
function f on the interval [0, T ].

Remark 1.17. If f has a continuous derivative, then the quadratic variation is always zero

V2(f ; 0, T ) = 0.

The quadratic variation measures the variation at a different scale than total variation, and assigns
much smaller values to small variations since we are summing the squares of small numbers. We can
observe that although Brownian motion has infinite total variation, it has finite quadratic variation.

Theorem 1.18

For T > 0,

V2(Wt; 0, T ) = lim
∥Π∥→0

n−1∑
i=0

|Wti+1
−Wti |2 = T.

That is, W has quadratic variation t, i.e. [W,W ]T = [W ]T = T .

The proof is a bit difficult, but some intuition can be gained by looking at the symmetric random
walk (Problem 1.7). The intuition is also clear if we take the expected values since the variance of
Var(Wti+1

−Wti) = ti+1 − ti, so one can intuitively expect the the quadratic variation is the sum of
many independent terms, so it should be close to its expected value by the law of large numbers.

The fact that Brownian motion has non-zero quadratic motion is a crucial result. Its behavior is
very different than the differentiable functions we have seen before, so the usual notions of calculus no
longer make sense, and a new generalization of calculus has to be developed.

1.2 Example Problems

1.2.1 Proofs of Main Results

Problem 1.1. Find the covariance function of Brownian motion.

Solution 1.1. We want to find
K(s, t) = Cov(Ws,Wt).

Without loss of generality, suppose that t > s. In this case, we have

Cov(Ws,Wt) = Cov(Ws,Wt −Ws +Ws) = Cov(Ws,Wt −Ws) + Cov(Ws,Ws) = s = min(s, t)

since Cov(Ws,Wt −Ws) = 0 because of independent increments. The exact same argument show that
if s > t, then

Cov(Ws,Wt) = t = min(s, t).
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Problem 1.2. Show that Brownian motion satisfies the Markov property (Proposition 1.8).

Solution 1.2. The following proof uses only the fact that Brownian motion has independent incre-
ments. We need to show that for any set A ⊂ R and t > s,

P(Wt ∈ A | Fs) = P(Wt ∈ A |Ws).

We have
P(Wt ∈ A | Fs) = P((Wt −Ws) +Ws ∈ A | Fs).

Notice that Wt+Ws is independent of Fs and Ws is Fs measurable. This implies that the conditional
probability only depends on Fs through its most recent information σ(Ws). We conclude that the
conditional probability only depends on Ws,

P((Wt −Ws) +Ws ∈ A | Fs) = P((Wt −Ws)−Ws ∈ A |Wt) = P(Wt ∈ A |Ws).

Remark 1.19. To make the dependence on Wt more precise, we can use the fact that conditionally
on Fs, that Wt+s +Wt is Gaussian with mean Ws and variance (t− s), so its conditional probability
is explicit

P((Wt −Ws) +Ws ∈ A | Fs) =

∫
A

1√
2π(t− s)

e−
(x−Ws)
2(t−s) dx = P((Wt −Ws) +Ws ∈ A |Ws)

Problem 1.3. Show that Brownian motion is a martingale (Proposition 1.9).

Solution 1.3. Since Wt ∼ N(0, t) is satisfies the integrability conditions. For s ≤ t, we have again
by the independence of the increments,

E[Wt|Fs] = E[Wt −Ws +Ws|Fs]

= E[Wt −Ws|Fs] + E[Ws|Fs]

= E[Wt −Ws] +Ws

= 0 +Ws.

1.2.2 Applications

Problem 1.4. Let W be a standard Brownian motion. Show that the process Ŵ defined through
Ŵ0 := 0 and Ŵt := tW1/t for t > 0 is again a standard Brownian motion.

Solution 1.4. There are several ways to check this. Perhaps it is easiest to show Definition 1.5.
Clearly, Ŵt is a centered Gaussian process because it is the scalar multiple of a Gaussian process
under a chance of time. It is continuous because by Proposition 1.10

lim
t→0

Ŵt = lim
t→0

tW1/t = lim
s→∞

1

s
Ws = 0.

To compute the covariance function, notice that for t > s,

K(s, t) = Cov(Ŵs, Ŵt) = Cov(sW1/s, tW1/t) = stmin
(1
s
,
1

t

)
= s = min(s, t).

The same result holds for s > t, so we can conclude that Ŵt .

Alternative Solution: We can also check the conditions in Definition 1.1:
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1. By definition Ŵ0 = 0

2. The sample paths are continuous at 0 because

lim
t→0

Ŵt = lim
t→0

tW1/t = lim
s→∞

1

s
Ws = 0.

The continuity elsewhere is clear because it is rescaling of a continuous function.

3. For any t1 < · · · < tn, we have Ŵt1 − Ŵt0 , . . . , Ŵtn − Ŵtn−1 are independent because for any
pairs of

Ŵtk − Ŵtk−1
= tkW 1

tk

− tk−1W 1
tk−1

we have (without loss of generality we may assume that tk−1 < tk ≤ tk′−1 < tk′)

Cov(Ŵtk − Ŵtk−1
, Ŵt′k

− Ŵtk′−1
)

= tktk′ min(t−1
k , t−1

k′ )− tktk′−1 min(t−1
k , t−1

k′−1)− tk−1tk′ min(t−1
k−1, t

−1
k′ ) + tk−1tk′−1 min(t−1

k−1, t
−1
k′−1)

= tk − tk − tk−1 + tk−1

= 0.

Since the increments are Gaussian, we have that they are uncorrelated and therefore independent.

4. We have
E[Ŵt − Ŵs] = tE[W1/t]− sE[W1/s] = 0

since Wt is centered. Likewise, we have for t > s,

Var(Ŵt − Ŵs) = Var(Ŵt) + Var(Ŵs)− 2Cov(Ŵs, Ŵt)

= t2 Var(W 1
t
) + s2 Var(W 1

s
)− 2stCov(W 1

s
,W 1

t
) W 1

t
∼ N(0, t−1)

= t+ s− 2stmin
(1
s
,
1

t

)
= t− s.

Problem 1.5. For a constant σ let
Zt = eσWt− 1

2σ
2t

Show that Z is a martingale.

Solution 1.5. We use the fact that Wt ∼ N(0, t). Recall that if Z ∼ N(0, σ2) then the formula for
the moment generating function of a standard Gaussian says that

E[etZ ] = e
1
2 t

2σ2

.

The integrability assumptions follow from the fact that the MGF of the Gaussian random variable is
finite.

E [Zt|Fs] = E
[
eσWt− 1

2σ
2t
∣∣∣Fs

]
= eσWs− 1

2σ
2tE

[
eσ(Wt−Ws)

∣∣∣Fs

]
= eσWs− 1

2σ
2tE

[
eσ(Wt−Ws)

]
= eσWs− 1

2σ
2te

1
2σ

2(t−s)

= eσWs− 1
2σ

2s

= Zs.
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Problem 1.6. For µ > 0, let
Zµ
t := eσWt+µt,

which is called geometric Brownian motion with drift µ and volatility σ.

(a) Compute E[Zµ
t ].

(b) Determine the asymptotic rate of growth:

lim
t↑∞

1

t
logZµ

t .

Solution 1.6. We will see later in this course that geometric Brownian motion is used to model stock
prices in the Black–Scholes model.

Part (a): Using the fact that Wt ∼ N(0, t) and the MGF of a Gaussian random variable, we have
that

E[Zµ
t ] = E[eσWt+µt] = eµte

1
2σ

2t = e
1
2σ

2t+µt.

Part (b): We have by Proposition 1.10 that

lim
t→∞

1

t
logZµ

t = lim
t→∞

(
σWt

t
+ µ

)
= µ.

This implies that at the logarithmic scale, logZµ
t grows like tµ.This is the the growth rate of a

deterministic process that satisfies d
dtSt = µSt.

Remark 1.20. Notice that

E
1

t
logZµ

t = µ ≤ 1

t
logEZµ

t =
1

2
σ2 + µ

by Jensen’s inequality. So the fact that both (a) and (b) do not have the same exponential scaling is
not surprising.

Problem 1.7. We define the quadratic variation of a random walk Xn to be

[X]n =

n∑
i=1

(Xi −Xi−1)
2.

Show that the quadratic variation of Xn is n.

Solution 1.7. Since Xi −Xi−1 = ξi where ξi is an independent Rademacher random variable, which
takes values in {±1} we have that

(Xi −Xi−1)
2 = ξ2i = 1,

so

[X]n =

n∑
i=1

(Xi −Xi−1)
2 = n.

Remark 1.21. Since Brownian motion can be though of as the limit of the scaled random walk

W
(n)
t := 1√

n
X⌊nt⌋, one might expect that the quadratic variation of Brownian motion is

[ 1√
n
X⌊nt⌋

]
n
=

1

n

⌊nt⌋∑
i=1

(Xi −Xi−1)
2 ≈ t.
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