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1 Birth and death processes

In this section, we present a commonly used model for population dynamics. These processes are
a special case of CTMC where the only transitions are up one unit (birth) or down one unit (death).

Let X(t) be the number of individuals in a population at time t. The state space in this setting is

S = {0, 1, 2, · · · }.

If there are i individuals in the population, a new individual will be born with intensity λi ≥ 0, in
which case the population will increase by 1. Similarly, the intensity for a death is βi ≥ 0, in which
case the population size decrease by 1. The infinitesimal generator matrix can be expressed as

Q =


−λ0 λ0 0 0
β1 −(λ1 + β1) λ1 0

0 β2 −(λ2 + β2) λ2
. . .

. . .
. . .

. . .
. . .


which implies that

P(X(t+△t) = n|X(t) = n) = 1− (βn + λn)△t+ o(△t)

P(X(t+△t) = n+ 1|X(t) = n) = λn△t+ o(△t)

P(X(t+△t) = n− 1|X(t) = n) = βn△t+ o(△t).

The transition matrix of the embedded DTMC is given by

P̃ =


0 1
β1

λ1+β1
0 λ1

λ1+β1
β2

λ2+β2
0 λ2

λ2+β2

. . .
. . .

. . .


Remark 1.1. We can interpret the rates λi and βi as the rates of births and deaths. When the system

is in state i, the next potential birth happens at the random time T
(b)
i , which is an exponential time

with intensity λi. The next potential death happens after T
(d)
i , which is an exponential time with

intensity βi. These two times compete with each other, and at their minimum T
(b)
i ∧ T

(d)
i , the system

changes to a new state. Thus, the sojourn time at state i is given by T
(b)
i ∧ T

(d)
i ∼ Exp(λi + βi) with

the survival function
P
(
T

(b)
i ∧ T

(d)
i > t

)
= e−(λi+βi)t.

This is consistent with the rate of the sojourn time that one can read off directly from the Q-matrix.

1.0.1 Stationary Distribution

In general, the stationary distribution of a birth and death process may not exist. For example, for
the Poisson process, it is clear that N(t) → ∞ and t → ∞, so the Poisson process does not have a
stationary distribution. This is because in the Poisson process there are no deaths. If the birth and
death rates are balanced, then it might be possible that there might be an equilibrium.

Proposition 1.2

A birth and death process is positive recurrent if and only if

∞∑
n=1

λn−1 · · ·λ1λ0

βn · · ·β2β1
< ∞.
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This condition states the birth rates cannot be too large relative to the death rates. If we know
that the birth and death process is positive recurrent, then we can solve for the stationary distribution.

Proposition 1.3

Suppose that
∞∑

n=1

λn−1 · · ·λ1λ0

βn · · ·β2β1
< ∞.

Then a stationary distribution exists, and it is given by

π0 =
1

1 +
∑∞

n=1
λn−1···λ1λ0

βn···β2β1

.

and

πn =
λn−1 · · ·λ1λ0

βn · · ·β2β1
π0 for n = 1, 2, 3, . . .

Remark 1.4. Combining the results in Proposition 1.2 and Proposition 1.3, implies that if

∞∑
n=1

λn−1 · · ·λ1λ0

βn · · ·β2β1
< ∞,

then the limiting distribution exists and is equal to the unique stationary distribution by the funda-
mental limit theorem for CTMCs.

1.1 Special Cases

Here are a few important special cases of birth and death processes.

1. Poisson process: Here, λi = λ > 0 for i = 0, 1, 2, . . . and βi = 0 for i = 1, 2, . . ..

2. Linear growth model: Let λi = iλ for λ > 0 and βi = iβ for β > 0 and i = 1, 2, . . ..
Intuitively, all individuals in the population reproduce independently at the same rate λ and die
independently at the same rate β.
In particular, if βi = 0 for i = 1, 2, . . ., we call it as a simple birth process, i.e., all individuals
in the population reproduce independently at the same rate λ, and there are no deaths.

3. Population model with immigration: Let λi = iλ+ ν for λ > 0 and βi = nβ for β > 0 and
i = 1, 2, . . . Intuitively, individuals dies and reproduce with rates β and λ, respectively, as in the
Linear growth model. At the same time, new individuals arrive at a constant rate ν > 0.

4. Markovian queueing models: Suppose Xt denotes the number of people on line for some
service. We assume that people arrive at a rate λ, i.e., the arrival number follows a Poisson
process with rate λ. Customers are serviced at an exponential rate β.

(a) M/M/1 queue: There is one server and the first person in line is being serviced. Then
λn = λ and βn = β.

(b) M/M/k queue: There are k servers and anyone in the first k positions in the line can be
served. Then λn = λ and

βn =

{
nβ, if n ≤ k

kβ, if n ≥ k.
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1.2 Example Problems

1.2.1 Proofs of Main Results

Problem 1.1. Find the transition matrix of the embedded DTMC of a birth and death process.

Solution 1.1. Recall that the formula for the transition matrix is

pii=0 pij =
qij
−qii

so

P̃ =


0 1
β1

λ1+β1
0 λ1

λ1+β1
β2

λ2+β2
0 λ2

λ2+β2

. . .
. . .

. . .


Problem 1.2. Find the stationary distribution of the birth and death process (Proposition 1.3)

Solution 1.2. If a stationary distribution π exists, it must satisfy the balance equation πQ = 0, i.e.,
λ0π0 − β1π1 = 0
λ0π0 − (λ1 + β1)π1 + β2π2 = 0
...
λn−1πn−1 − (λn + βn)πn + βn+1πn+1 = 0, for n = 1, 2, 3, . . .

We can solve these systems inductively. The first equation implies that

π1 =
λ0

β1
π0.

Substituting this into the second equation implies that

π2 =
1

β2

(
(λ1 + β1)π1 − λ0π0

)
=

λ1

β2
π1 =

λ1λ0

β2β1
π0.

Continuing this argument inductively using the induction hypothesis that πn = λn−1

βn
πn−1 implies

πn+1 =
1

βn+1

(
(λn+βn)πn−λn−1πn−1

)
=

1

βn+1

(
(λn+βn)πn−βnπn

)
=

λn

βn+1
πn = · · · = λn−1 · · ·λ1λ0

βn · · ·β2β1
π0.

Since
∑∞

n=0πn = 1, we must have

π0 =
1

1 +
∑∞

n=1
λn−1···λ1λ0

βn···β2β1

.

and

πn =
λn−1 · · ·λ1λ0

βn · · ·β2β1
· 1

1 +
∑∞

n=1
λn−1···λ1λ0

βn···β2β1

=
λn−1 · · ·λ1λ0

βn · · ·β2β1
π0 , for n = 1, 2, 3, . . .

We see that this exists, precisely when
∞∑

n=1

λn−1 · · ·λ1λ0

βn · · ·β2β1
< ∞.

Remark 1.5. In conclusion, the necessary and sufficient condition for the existence of the stationary
distribution, or equivalently the birth-death process is positive recurrent, is that

∞∑
n=1

λn−1 · · ·λ1λ0

βn · · ·β2β1
< ∞.

This proves Proposition 1.2.
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1.2.2 Applications

Problem 1.3. Customers arrive at a single-server queue in accordance with a Poisson process with
intensity λ > 0. However, an arrival that finds n customers already in the system (including the
customer being served) will only join the system with probability 1

1+n . That is, with probability n
n+1

such an arrival will not join the system. The service times of customers are mutually independent with
common exponential distribution with mean 1/µ. Let X(t) be the number of customers in the system
at time t with X(0) = 0. Show that the limiting distribution of the number of customers in the system
is Poisson and then identity its Poisson parameter.

Solution 1.3. First note that this is a birth and death process. In general, the generator matrix can
be expressed as

Q =


−λ0 λ0 0 0
β1 −(λ1 + β1) λ1 0

0 β2 −(λ2 + β2) λ2
. . .

. . .
. . .

. . .
. . .


Since the service time of each customer follows the exponential distribution with mean 1/µ, the cor-
responding rate is βn = µ for all n. On the other hand, we know that the waiting time for the next
person arrived follows the exponential distribution with rate λ. Since there is a probability 1/(1 + n)
this person will join the queue, the customers will arrive at an average rate of

λ
customers arrive

minute
=⇒ λ

customers arrive

minute
× 1

n+ 1

join queue

customers arrive
=

λ

n+ 1

join queue

minute

This implies that the rate of arrivals is λn = λ
1+n for all n. The generator matrix is

Q =


−λ λ 0 0
µ −

(
λ
2 + µ

)
λ
2 0

0 µ −
(
λ
3 + µ

)
λ
3

. . .

. . .
. . .

. . .
. . .


By Theorem 1.3, the limiting distribution is given by

π0 =

(
1 +

∞∑
n=1

λn

µnn!

)−1

=

( ∞∑
n=0

λn

µnn!

)−1

= e−λ/µ and πn =
λn

µn · n!
e−λ/µ, n = 1, 2, ....

That is, the limiting distribution of the number of customers in the system is Poisson with mean λ/µ.

Problem 1.4. Suppose X(t) denotes the number of customers on line for some service. We assume
that customers arrive at a rate λ > 0, i.e., the arrival number follows a Poisson with rate λ. Customers
are serviced at an exponential rate β > 0. In a M/M/∞ queueing model, we assume there are infinitely
many servers and anyone in the line can be served.

1. Determine the infinitesimal generator matrix for the M/M/∞ queueing model.

2. Determine the 1-step transition matrix of the embedded DTMC of the M/M/∞ queueing model.

3. Determine a stationary distribution π = (π0, π1, π2, ...) for the M/M/∞ queueing model.
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Solution 1.4.

Part 1: For a birth and death processes, the generator matrix is

Q =


−λ0 λ0 0 0
β1 −(λ1 + β1) λ1 0

0 β2 −(λ2 + β2) λ2
. . .

. . .
. . .

. . .
. . .


For M/M/∞ queueing model, it is easy to see λn = λ and βn = nβ. Therefor, the generator is

Q =


−λ λ 0 0
β −(λ+ β) λ 0

0 2β −(λ+ 2β) λ
. . .

. . .
. . .

. . .
. . .


Part 2: From the generator matrix A, the 1-step transition matrix of the embedded DTMC is

P̃ =


0 1 0 0

β/(λ+ β) 0 λ/(λ+ β) 0

0 2β/(λ+ 2β) 0 λ/(λ+ 2β)
. . .

. . .
. . .

. . .
. . .


Part 3: To find the stationary distribution, we have that

∞∑
n=1

λn−1 · · ·λ1λ0

βn · · ·β2β1
=

∞∑
n=1

λn

n!βn
= e

λ
β − 1 < ∞

Therefore, Proposition 1.3 implies that

π0 =
1

1 +
∑∞

n=1
λn−1···λ1λ0

βn···β2β1

= e−
λ
β

and

πn =
λn−1 · · ·λ1λ0

βn · · ·β2β1
π0 =

λn

n!βn
e−

λ
β for n = 1, 2, 3, . . .

The stationary distribution is a Poisson distribution with mean λ
β .
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